Overview of Radiation Protection aspects of LS3-WP8 activities

<u>Angelo Infantino</u>, Robert Froeschl, Anna Anchini, Davide Bozzato, Patrycja Dyrcz, Tommaso Lorenzon

EDMS 3171642

14th HL-LHC collaboration meeting - 08.10.2024

HSE

HSE Radiation Protection

With inputs from: C. Celce, P. Bertreix, G. Dumont

Radiation Protection

Outlook

□ HSE-RP contribution to HL-LHC WP8 over many projects/activities

This talk main focus on:

- Recall on ALARA at CERN, LS3 dose objective, and more
- Removal of the TAS in ATLAS/CMS
- TAN to TAXN conversion
- WDP, transport and waste aspects

Recall on ALARA at CERN

EDMS 1751123

ALARA Levels at CERN. Airborne activity and surface contamination levels are expressed respectively in CA and CS values, as defined in the Swiss legislation for Radiation Protection (Swiss Federal Council, 2018).

Criteria	ALARA level					
Individual dose [µSv]		100		1000		
Collective dose [person µSv]		500		5000		
Ambient dose equivalent [µSv/h]	Level 1	50	Level 2	2000	Level 3	
Airborne activity in CA		5		200		
Surface contamination in CS		10		100		

Level	l	DIMR-1	DIMR-2		DIMR-3
Own	er	Applicant (i.e. equipm	nent owner, work coordinator,	co	ntract or activity responsible)
=	WDP template	<i>Optional</i> Applicant2	Mandatory Applicant ²		Mandatory Applicant ^{2,} 3
Preparation (iterative)	Provides dose rates	RP	RP		RP
epa	Sets DIMR level	RP and RSSO	RP and RSSO ³		RP and RSO
	Documented work optimization process	Optional RSSO	<i>Mandatory</i> RP and RSSO		Mandatory Applicant and RSSO, RP and RSO
	m PCR plicable)	on request	Yes		Yes
Appr	oval	RSSO and RP	Dept. GL and RP4 and RSO		Complex manager (ALARA-c)
	Veto rights	RP Group leader	Leader of the HSE unit		Director General
dn w	Retour d'expérience	<i>Optional</i> RSSO	<i>Mandatory</i> RP and RSSO		Mandatory RSO and RP and intervention supervisor
Follow	Closure of WDP	<i>Optional</i> : RSSO	Mandatory: RP		Mandatory: RP
Ŧ	Closure of intervention (DIMR)	RSSO₅	RSO		ALARA-committee responsible₅
Cont	rols	<i>Optional</i> RSSO	Mandatory RSSO7		<i>Mandatory</i> RP and RSO

- \succ ALARA level \rightarrow Radiological risk assessment based on different criteria
- WDP/optimization mandatory for ALARA II & III
- ALARA III approval by "ALARA committee" (complex manager, GL responsible for the equipment, RSO, RP GL, and more)

Dose objective

- CERN-ACC-2013-018 (EDMS 1509373) summarizes the Radiation Protection regulatory framework as well as the related design constraints and dose objectives to be followed by the HL-LHC project.
- □ Safety code F, design constraints, ALARA and dose objectives.
- □ Personal dose objectives apply at CERN:
 - Long Shutdowns -> max 3 mSv
 - The dose is to be counted for any consecutive 12-months period.
 - As it is not a limit it can be exceeded. However, the latter requires the approval by the RP group leader as well as the group leader responsible for the respective person.

□ RP objectives from LS2:

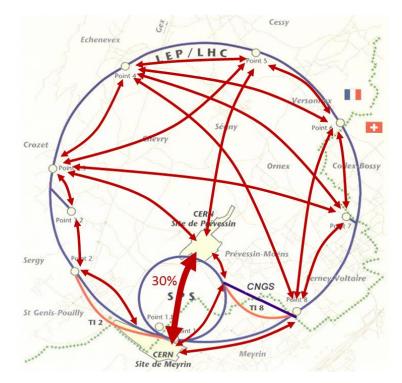
- □ Dose per person < 3mSv in 12-months period
- □ Number of radioactive transports: < 150/month

HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study
Milestone Report
DEFINITION OF REGULATORY FRAMEWORK, DESIGN LIMITS AND DOSE OBJECTIVES
S. Roesler
30 November 2012
High Luminosity LHC
The HiLumi LHC Design Study is included in the High Luminosity LHC project an partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.
This work is part of HiLumi LHC Work Package 1: Project Management & Technic Coordination.
The electronic version of this HiLumi LHC Publication is available via the HiLumi LHC web <http: hilumilhc.web.cern.ch=""> or on the CERN Document Server at the following l <http: cds.cern.ch="" search?p="CERN-ACC-2013-018"></http:></http:>
CERN-ACC-2013-018

DIMR

Courtesy A. Pardons and RSOC

Tentative list – ALARA Level to be confirmed by WDP


				Start of work	
Area	Project/package	PL/contact	Group	(T=start LS3)	Work duration
LHC	HL-LHC	Oliver Brüning	ATS-DO		
Pt1+Pt5	Experimental Beam pipe removal (from left-TAS to right-TAS Q1 through IP)	Josef Sestak	TE-VSC	T+2m	2m
Pt1+Pt5	TAN to TAXN conversion (including TAN removal)	Oliver Boettcher	BE-EA	T+4m	7m
Pt1+Pt5	Magnets (warm + SC) deinstallation (all along LSS1 & LSS5) plus DFBX	B. Di Girolamo	TE-MSC	T+4m	1m
Pt1+Pt5	Vacuum sectors and equipment removal all along LSS1 & LSS5 (other)	Eric Page	TE-VSC	T+4m	3m
Pt1+Pt5+Pt7	Collimators deinstallation (LSS1 & LSS5, Point 7)	François-Xavier N.	SY-STI	T+4m	1m
Pt1+Pt5	QRL dismanling (LSS1 & LSS5, work done by CERN)	Andrew John Lees	TE-CRG	T+4m	5m
Pt1+Pt5	Civil Engineering works (LSS1 & LSS5): vertical cores openings and 13 MCEW (Minor Civil Engineering Works)	Christophe Biot	SCE	T+5m	4m
Pt1+Pt5	Removal of CV piping all along LSS1&5	Theodoros Aivaliotis	EN-CV	?	?
Pt1+Pt5	Reinstallation of CV piping all along LSS1&5	Theodoros Aivaliotis	EN-CV	?	?
Pt1+Pt5	Decabling	Georgi Georgiev	EN-EL	T+5m	3m
Pt1+Pt5	Cabling	Gaël Girardot	EN-EL	?	?
D+1 + D+5	QRL dismanling, refurbishment (in UX65) and re-installation (LSS1 & LSS5), including DSL modifications and	Andrew John Long	TE ODO	T. A.z.	E
Pt1+Pt5	re-installation (work done by CERN)	Andrew John Lees	TE-CRG	T+4m	5m
Pt2 + Pt8	Beam Screen Treatment - Triplets of Points 2 et 8	Bernard Henrist	TE-VSC	T+5m	18m
Pt1+Pt5+Pt7	Collimators reinstallation Points 1, 5 et 7	François-Xavier	SY-STI	T+19m	6m
Pt6	Beam dump removal and reinstallation	Nicola Solieri	SY-STI	?	?

- DIMR granularity/ownership discussed and agreed on a dedicated meeting on 09.07.2024 with HL-LHC PSO, RP, RSOs and WP/group representatives.
- Two main activity impacting WP8: TAS removal and TAN/TAXN conversion

Internal transport

Radioactive transport mostly depends on :

- Nuclide inventory / activity (classification)
- External dose rate (labelling)
- □ Size/mass of the content (packaging)

All the above must be known to guarantee the feasibility of the transport in due time.

Few triggers for "critical" transport:

- Size/mass of the <u>content</u> exceeding currently available means (590*235*233cm / 20,6t)
- Solution \mathbf{X} Dose rate at contact exceeding 2 mSv/h or/and 100 μ Sv/h at 2 m
- Presence of alpha emitters / "heavy" radionuclides
- Total activity > 10¹¹ Bq

Possible issues for transport :

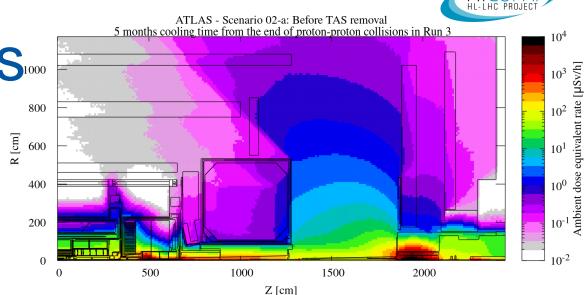
- Certified packaging not available (size / mass too high)
- Dose rate too high need specific shielding (to be determine and manufactured)
- Activity too high transport not possible (unless specific derogation from the authorities which can take years to have approved after submission of the dossier and is <u>valid for</u> <u>one specific transport only</u>!)
- Derogation not accepted from authorities.

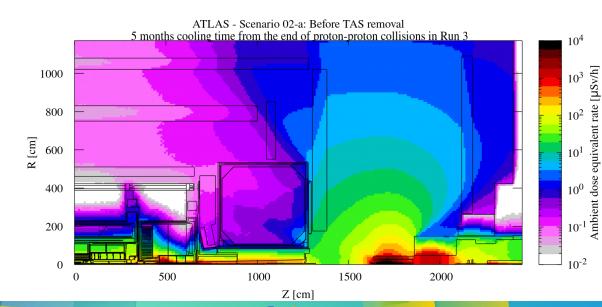
Radioactive Waste disposal pathways

- ✓ From 2010, tripartite agreement between CERN and Host States, represented by Swiss Federal Office of Public Health (OFSP) and the French Nuclear Safety Authority (ASN) -> <u>link</u>
- ✓ "Fair Share" principle revised in March 2022, with three indicators: the volume eliminated, radiotoxicity and elimination costs.
- ✓ With these indicators, it will now be possible to better compare and measure the share between the two Host States

CERN RW classification	Disposal pathway
Clearance candidates – CL (Candidats à la Liberation Inconditionelle)	Release from regulatory control in Switzerland (clearance ↔ "free release")
	Surface disposal in France, as defined by the acceptance criteria of the ANDRA CIRES repository.
(Faibles et Moyennes Activités a Vies	Short-lived intermediate and low level waste, half-life <30 years. Surface disposal in France as defined by acceptance criteria in ANDRA CSA repository.
	Intermediate and low-level waste which does not fulfil the FMA-VC criteria and disposal in Switzerland (PSI).

Removal of the TAS in ATLAS/CMS

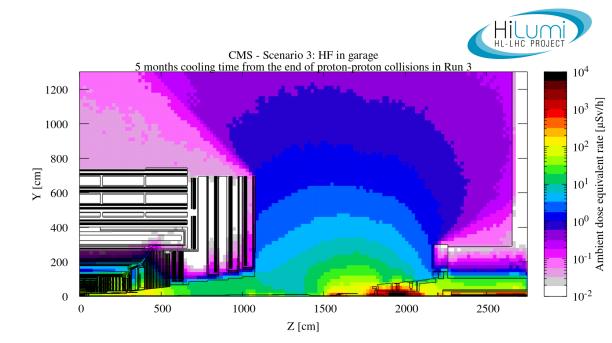

Radiation Protection

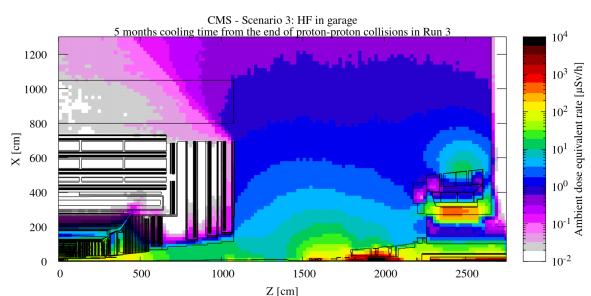

HSE

08.10.2024

ATLAS open scenarios....

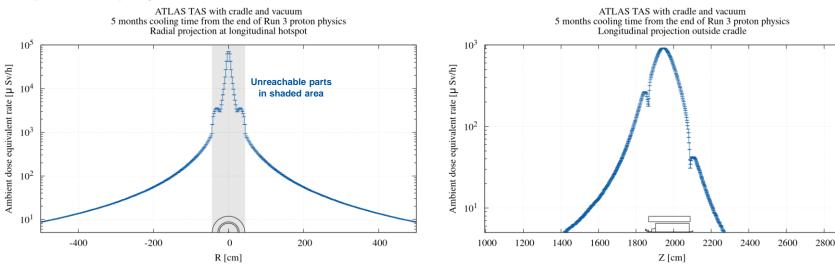
- Several configurations studied and discussed with ATLAS representatives.
 - Results summarized in T. Lorenzon et al., <u>EDMS</u>
 <u>3061416</u>
- The most representative configurations for the TAS extraction scenario are the configuration 02-a "Before TAS removal" and configuration 02-b "TAS removal"
- To stay on the conservative side, the cooling time that can be considered is 5 months from the end of proton physics in Run 3 (consistent with TAS dose rate estimates).

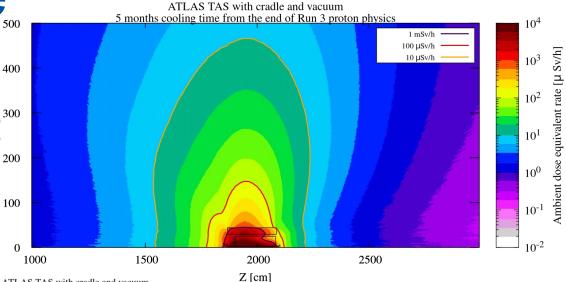




CMS open scenarios

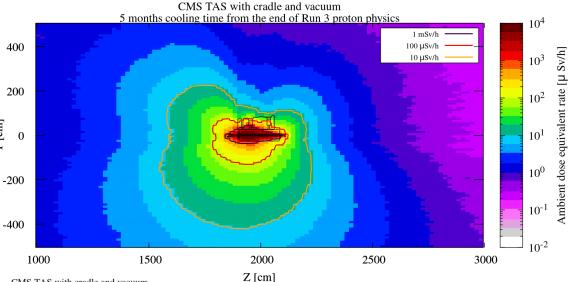
- Several configurations studied and discussed with CMS representatives.
 - Results summarized in T. Lorenzon et al., <u>EDMS</u>
 <u>2748870</u>
- The most representative configuration for the TAS extraction scenario is the configuration so-called "HF in garage":
 - HF detector removed
 - New Forward Shielding removed
 - Rotating shielding open
- To stay on the conservative side, the cooling time that can be considered is 5 months from the end of proton physics in Run 3 (consistent with TAS dose rate estimates).

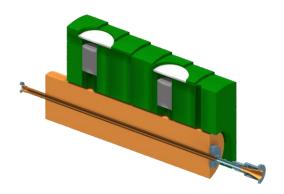




ATLAS TAS and cradle

- Residual dose rates have been estimated and results have been summarized in D. Bozzato et al., <u>EDMS 3129308</u>.
- To stay on the conservative side, the cooling time 100 that can be considered is 5 months from the end of proton physics in Run 3.




CMS TAS and cradle

- Residual dose rates have been estimated and results have been summarized in D. Bozzato et al., <u>EDMS 3129308</u>.
- To stay on the conservative side, the cooling time that can be considered is 5 months from the end of proton physics in Run 3.

2800

CMS TAS with cradle and vacuum CMS TAS with cradle and vacuum 5 months cooling time from the end of Run 3 proton physics 5 months cooling time from the end of Run 3 proton physics Vertical projection at longitudinal hotspot Longitudinal projection outside cradle at beam level 10^{3} [h Sv/h] Unreachable parts in shaded area rate equivalent 10^{2} dose Ambient 10^{1} \odot 0 -400 -200 200 400 1400 1600 2000 2200 2400 2600 1000 1200 1800 Z [cm] Y [cm]

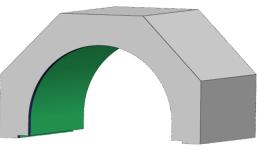
 10^{5}

 10^{4}

 10^{3}

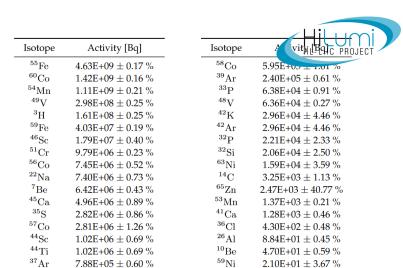
 10^{2}

 10^{1}


rate [µ Sv/h]

Ambient dose equivalent

ATLAS JFC3 and JFSU


- The radionuclide inventories of the ATLAS JFC3 and JFSU shielding have been estimated and results have been summarized in T. Lorenzon et al., <u>EDMS 2914560</u>
- Results have already been communicated to HSE-RP-CS to define the appropriate transport classification from the ATLAS surface buildings to Building 191 (Meyrin) where they will be machined:
 - The two shieldings would meet the requirements for LSA-1 type transport (input from P. Bertreix)

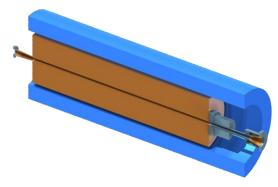
ATLAS JFSU

ATLAS JFC3

Radionuclide activities for one ATLAS JFC3 for 7 months cooling time from the end of proton physics in Run 3.

Isotope	Activity [Bq]	Isotope	Activity [Bq]
55 Fe	$1.32\text{E+08} \pm 0.24$ %	44 Ti	$5.83E+03 \pm 8.31$ %
60 Co	$4.83E+07 \pm 0.27$ %	^{44}Sc	$5.83E+03 \pm 8.31$ %
^{54}Mn	$2.47E+07 \pm 0.53$ %	^{32}P	$2.93E+03 \pm 8.34$ %
59 Fe	$8.51E+06 \pm 0.68$ %	^{33}P	$2.66E+03 \pm 22.84$ %
^{49}V	$5.12E+06 \pm 1.05$ %	^{39}Ar	$9.11E+02 \pm 9.48$ %
^{51}Cr	$3.19E+06 \pm 0.77$ %	⁶³ Ni	$1.46E+02 \pm 37.74$ %
^{3}H	$1.39E+06 \pm 1.06$ %	^{42}K	1.20E+02 ± 70.69 %
^{46}Sc	$4.86E+05 \pm 3.31$ %	$^{42}\mathrm{Ar}$	1.20E+02 ± 70.69 %
$^{7}\mathrm{Be}$	$2.62E+05 \pm 4.10$ %	^{52}Mn	$1.18\mathrm{E}{+02}\pm1.02~\%$
56 Co	$1.66E+05 \pm 5.72$ %	^{53}Mn	$2.36E+01 \pm 0.57$ %
^{48}V	$1.49E+05 \pm 1.50$ %	^{14}C	$9.78E+00 \pm 19.54$ %
^{22}Na	$8.33E+04 \pm 6.62$ %	^{41}Ca	5.13E+00 ± 6.38 %
^{45}Ca	$6.68E{+}04 \pm 9.52$ %	²⁶ Al	$1.17E+00 \pm 3.53$ %
$^{57}\mathrm{Co}$	4.24E + $04 \pm 11.57 \%$	^{36}Cl	$1.02E+00 \pm 8.42$ %
58 Co	$3.43E+04 \pm 12.02 \%$		
^{37}Ar	2.10E + $04 \pm 11.38 \%$		
^{35}S	1.05E +04 \pm 24.02 %		

Radionuclide activities for one ATLAS JFSU for 3 months cooling time from the end of proton physics in Run 3.



ATLAS TAS and cradle

- The radionuclide inventories of the different components have been estimated and results have been summarized in D. Bozzato et al., <u>EDMS 3129308</u>:
 - To stay on the conservative side, the cooling time to be considered is 2 months from the end of proton physics in Run 3.
 - In the table the inventory for the full assembly is summarized.
- Results have already been communicated to HSE-RP-CS to define the appropriate transport classification:
 - The full TAS assembly, or even the TAS alone, would not meet requirements for LSA-1 type transport (input from P. Bertreix): a packed transport in a dedicated container is required (see next slides).

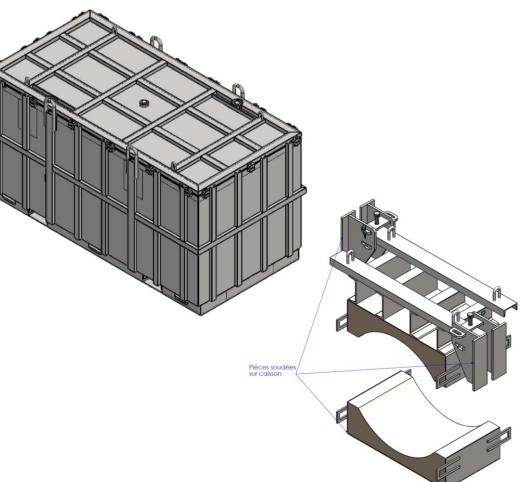
Nuclide	Activity [Bq]	Nuclide	Activity [Bq]	Nuclide	Activity [Bq]
⁵⁵ Fe	2.3733×10^{10}	³² P	7.6811×10^{7}	⁷¹ Ge	1.1301×10^3
⁵⁸ Co	1.8084×10^{10}	⁴⁴ Sc	1.3912×10^7	¹⁰ Be	1.1154×10^3
⁵⁴ Mn	1.4912×10^{10}	⁴⁴ Ti	1.3912×10^7	²⁶ Al	7.6039×10^2
⁵⁷ Co	1.3027×10^{10}	³⁹ Ar	6.3735×10^{6}	⁷⁵ Se	7.3838×10^2
^{3}H	7.1789×10^{9}	⁵² Mn	4.2281×10^{6}	^{60m} Co	$3.5361 imes 10^2$
⁶⁰ Co	6.4770×10^{9}	⁴² K	1.2853×10^{6}	⁶⁰ Fe	$3.5361 imes 10^2$
⁵¹ Cr	5.9177×10^{9}	⁴² Ar	1.2852×10^{6}	^{44m} Sc	$9.8146 imes 10^1$
⁴⁹ V	5.4625×10^{9}	³² Si	$1.0977 imes 10^6$	⁷² As	$6.0544 imes 10^1$
⁵⁶ Co	4.7709×10^{9}	⁵⁹ Ni	6.6015×10^{5}	⁷² Se	$5.2739 imes 10^1$
⁵⁹ Fe	1.8680×10^{9}	⁵⁶ Ni	1.7241×10^{5}	⁶⁷ Ga	3.9770×10^1
⁴⁶ Sc	1.3007×10^9	¹⁴ C	$1.2908 imes 10^5$	⁴⁰ K	2.9379
⁷ Be	$1.1061 imes 10^9$	⁶⁸ Ga	$5.4457 imes 10^4$	⁶⁷ Cu	3.3024×10^{-1}
⁶³ Ni	8.2304×10^{8}	⁶⁸ Ge	5.4448×10^{4}	⁴⁸ Sc	$6.1516 imes 10^{-2}$
⁴⁸ V	7.2442×10^{8}	⁴¹ Ca	2.5147×10^{4}	⁶⁶ Cu	$8.7986 imes 10^{-3}$
³⁷ Ar	4.3594×10^{8}	⁴⁷ Sc	1.5123×10^4	⁶⁶ Ni	8.7848×10^{-3}
³⁵ S	3.3874×10^{8}	⁵³ Mn	1.3263×10^{4}	⁷¹ As	$6.5363 imes 10^{-3}$
⁶⁵ Zn	3.0255×10^{8}	³⁶ C1	1.1023×10^4	⁵⁷ Ni	1.3181×10^{-3}
⁴⁵ Ca	2.4123×10^8	⁴⁷ Ca	2.2030×10^3	⁶⁹ Ge	1.0285×10^{-6}
³³ P	1.5497×10^8	^{73m} Ge	1.4944×10^3		
²² Na	1.0620×10^8	⁷³ As	1.4944×10^{3}		

Radionuclide activities for one full ATLAS TAS assembly (TAS and cradle) for 2 months cooling time from the end of proton physics in Run 3. Only activities above 10-6 Bq are reported.

CMS TAS and cradle

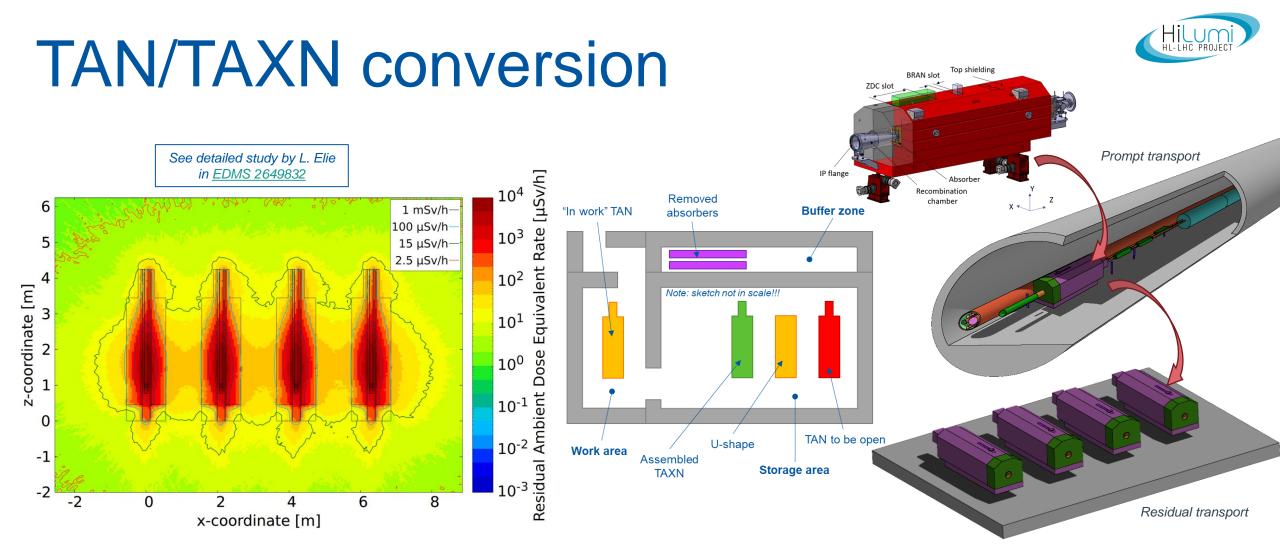
- The radionuclide inventories of the different components have been estimated and results have been summarized in D. Bozzato et al., <u>EDMS 3129308</u>:
 - To stay on the conservative side, the cooling time to be considered is 2 months from the end of proton physics in Run 3.
 - In the table the inventory for the full assembly is summarized.
- Results have already been communicated to HSE-RP-CS to define the appropriate transport classification:
 - The full TAS assembly, or even the TAS alone, would not meet requirements for LSA-1 type transport (input from P. Bertreix): a packed transport in a dedicated container is required (see next slides).

Nuclide	Activity [Bq]	Nuclide	Activity [Bq]	Nuclide	Activity [Bq]
⁵⁵ Fe	2.0987×10^{10}	^{83m} Kr	7.7268×10^5	95mNb	7.1924×10^{2}
⁵⁸ Co	1.9824×10^{10}	⁵⁹ Ni	$7.7103 imes 10^5$	⁹⁰ Y	$6.2308 imes 10^2$
⁵⁷ Co	1.4322×10^{10}	⁷⁵ Se	$4.3750 imes 10^5$	⁹⁰ Sr	$6.2288 imes 10^2$
⁵⁴ Mn	1.3929×10^{10}	^{73m} Ge	3.9246×10^5	²⁶ Al	4.0336×10^2
^{3}H	7.6220×10^{9}	⁷³ As	3.9246×10^5	^{60m} Co	$3.9834 imes 10^2$
⁵¹ Cr	5.3794×10^{9}	⁸² Rb	3.2354×10^{5}	⁶⁰ Fe	$3.9834 imes 10^2$
⁵⁶ Co	5.1628×10^9	⁸² Sr	$3.2353 imes 10^5$	⁹⁴ Nb	1.7257×10^2
⁴⁹ V	5.0006×10^9	⁵⁶ Ni	$1.7631 imes 10^5$	⁸⁵ Kr	1.2549×10^2
⁶⁰ Co	3.3383×10^{9}	⁶⁸ Ga	1.6098×10^{5}	^{44m} Sc	$9.3453 imes10^1$
⁵⁹ Fe	1.5239×10^{9}	⁶⁸ Ge	1.6096×10^{5}	⁹⁹ Mo	$8.4680 imes10^1$
⁴⁶ Sc	1.2385×10^{9}	¹⁴ C	1.3726×10^{5}	^{99m} Tc	8.2046×10^{1}
⁷ Be	$9.9805 imes 10^8$	^{93m} Nb	$1.1477 imes 10^5$	⁶⁷ Ga	$4.5239 imes 10^1$
⁶³ Ni	9.3337×10^{8}	^{95m} Tc	$1.1180 imes 10^5$	⁹⁶ Tc	$2.6505 imes 10^1$
⁴⁸ V	6.6770×10^{8}	^{97m} Tc	$7.4130 imes 10^4$	^{89m} Y	$2.3033 imes10^1$
³⁷ Ar	4.3078×10^{8}	⁹⁵ Zr	$6.1512 imes 10^4$	^{87m} Sr	$2.2840 imes10^1$
³⁵ S	3.4693×10^{8}	⁸⁴ Rb	$5.4994 imes 10^4$	⁸⁹ Zr	2.2071×10^{1}
⁶⁵ Zn	3.4227×10^8	⁹¹ Y	$5.3431 imes 10^4$	⁸⁷ Y	$2.2034 imes10^1$
⁴⁵ Ca	$2.3634 imes 10^8$	^{92m} Nb	$3.6521 imes 10^4$	⁸¹ Kr	$1.0123 imes 10^1$
³³ P	1.5943×10^{8}	⁷¹ Ge	$2.7698 imes 10^4$	⁴⁰ K	2.8989
²² Na	8.0093×10^7	⁴¹ Ca	$2.4492 imes 10^4$	⁶⁷ Cu	3.6718×10^{-1}
³² P	8.0028×10^7	⁹¹ Nb	1.9369×10^4	⁹³ Zr	$3.4703 imes 10^-$
⁴⁴ Sc	$1.3185 imes 10^7$	⁴⁷ Sc	$1.5157 imes 10^4$	⁷¹ As	$1.5175 imes 10^-$
⁴⁴ Ti	$1.3185 imes 10^7$	⁹³ Mo	1.4808×10^4	⁹⁷ Tc	$1.4682 imes 10^-$
³⁹ Ar	$6.4659 imes 10^6$	⁵³ Mn	1.2521×10^4	⁹² Nb	$6.7753 imes 10^{-1}$
⁵² Mn	3.9582×10^6	⁷⁴ As	1.1722×10^4	⁴⁸ Sc	6.0218×10^{-1}
⁸⁸ Y	2.7804×10^6	³⁶ Cl	1.1119×10^{4}	⁹⁸ Tc	4.4143×10^{-1}
⁸⁸ Zr	$2.2668 imes 10^6$	⁸⁹ Sr	$9.8925 imes 10^3$	⁷⁹ Se	$3.8765 imes 10^-$
^{91m} Nb	$2.0063 imes 10^6$	⁹⁵ Tc	$4.3979 imes10^3$	⁷⁷ Br	$3.6581 imes 10^-$
⁴² K	1.3425×10^6	⁸⁶ Rb	4.3831×10^3	⁶⁶ Cu	9.4453×10^{-1}
⁴² Ar	1.3424×10^6	⁷² As	3.6680×10^3	⁶⁶ Ni	9.4305×10^{-1}
⁸⁵ Sr	1.1534×10^6	⁷² Se	3.1951×10^3	⁹⁷ Ru	$3.1916 imes 10^-$
³² Si	1.1524×10^6	⁴⁷ Ca	2.2809×10^{3}	⁵⁷ Ni	$1.3273 imes 10^-$
⁸³ Rb	1.0293×10^6	⁹⁹ Tc	$1.4482 imes 10^3$	⁶⁹ Ge	$5.7081 imes 10^-$
⁹⁵ Nb	8.9649×10^{5}	¹⁰ Be	1.0688×10^{3}		


Radionuclide activities for one full CMS TAS assembly (TAS and cradle) for 2 months cooling time from the end of proton physics in Run 3. Only activities above 10-6 Bq are reported.

Transport of the TAS – preliminary solutions

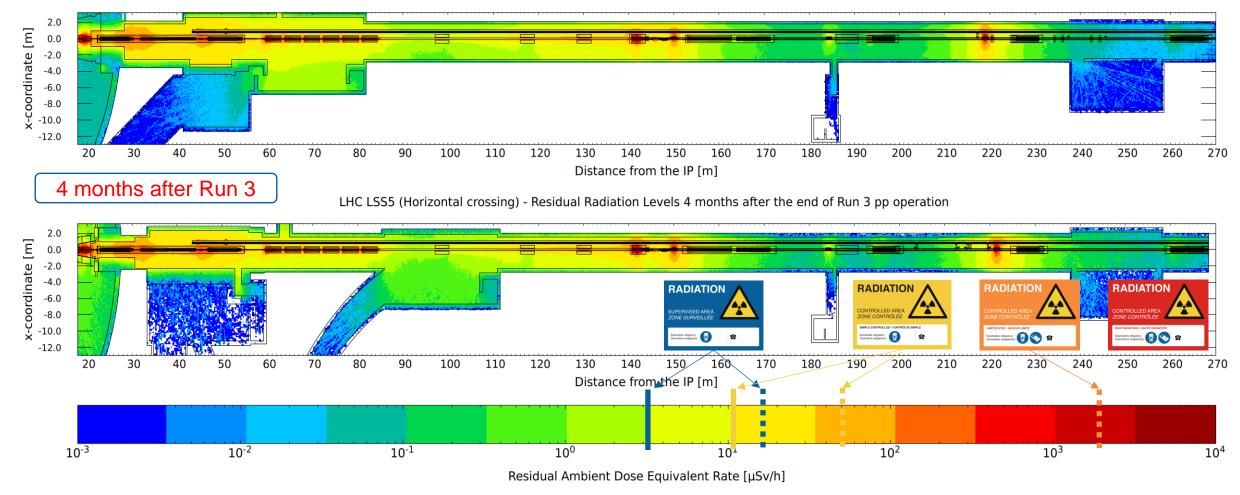
- Solutions for the transport of the TAS and cradle have been investigated (input from C. Celce and G. Dumont).
- The option currently under consideration is a naked 10m³ container
- The estimated residual dose rates at contact are already close to 2 mSv/h:
 - The bottom part of the container will be the weakest point (generally less shielding provided by the cradle)
 - If the dose rate at contact will be higher than 2 mSv/h, the container will be placed in a 6.05 m x 2.59 m x 2.59 m transport container whose bottom will be lined with an iron slab.



TAN to TAXN conversion

08.10.2024

A number of studies were developed by HSE-RP in the past years on TAXN design and TAN/TAXN conversion.
 A non-exhaustive list here: EDMS 2467997, 2596841, 2649832, and more.


LS3: Residual H*(10) for LSS1/5

Permanent workplace

Low-occupancy area (<20 % of working time)

['] LHC LSS1 (Vertical crossing) - Residual Radiation Levels 4 months after the end of Run 3 pp operation

Assuming LS3 starting in 2025!

TAN/TAXN conversion



Removal of TAN from LHC tunnel + transport

8

Assembly HL-LHC TAXN

Transport/installation in the tunnel

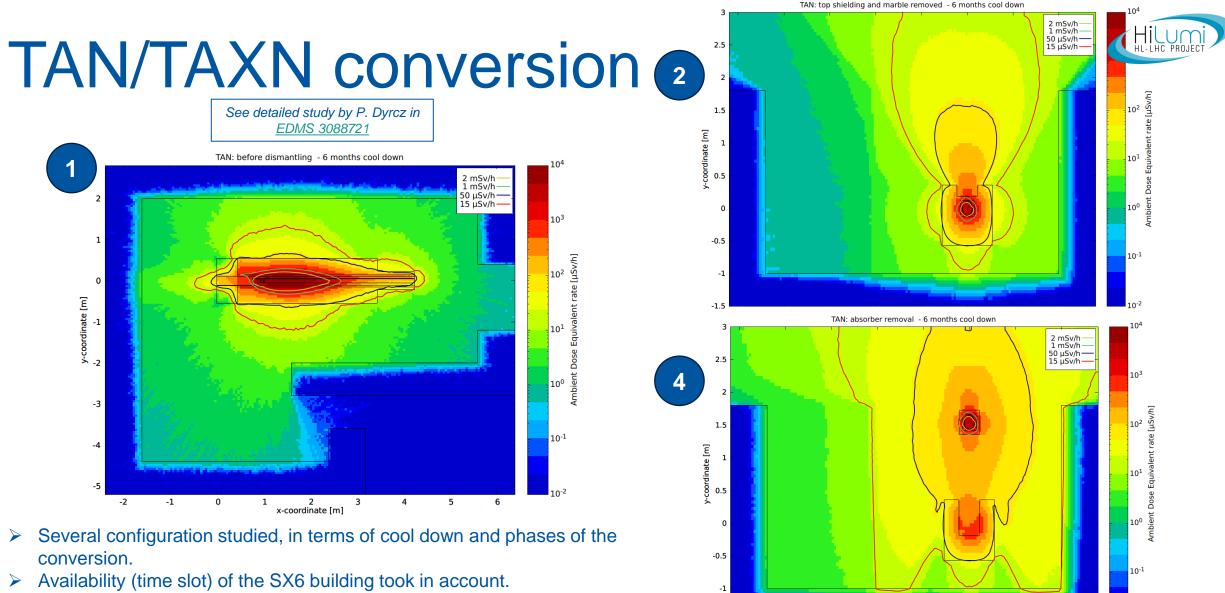
To be repeated 4x!

HSE


6

□ Shared worksite (with HL-LHC TDE) in SX6 building Dedicated working area for TAN to TAXN conversion

TAN/TAXN conversion


Courtesy O. Boettcher (WP8)

HSE

SX6

-1.5 -5

-4

-3

-1 x-coordinate [m] 0

-2

 Baseline: TAN removal in March/April 2026; conversation as from mid-2026 (~6 months cool down).

HSE

2

1

TAN/TAXN conversion

		TAN-to-TAXN conversion (4 TAN)		Total time (h)	18.73	Indiv.	0.93	mSv/h	1.365	mSv/h collective dose		Details	Comments
		TAN-to-TAXN conversion (1 TAN)		Total time (h)	4.68	Indiv.	0.234	mSv/h	0.341	mSv/h collective dose		Details	Comments
			Location of task	Work Position	Time	mSv/h	Indiv. Dose	No.	Collect. Dose				
No.	Work owner	Task	(z/x/y)	(z/x/y)	(min)	(chest)	mSv (chest)	Workers	mSv (chest)		Parts	Details	
		Disassembly of TAN and modification of TAN U-	(-1-41)	(-1-1)]]		()							
		shielding			3.77	h	0.204	Totals	0.301				
		Planned activity start date: 01/05/2026 (6 months cool-											
		down time after pp-run)										Height of supports tbd, position tbd	
Oa	EN-HE	Preparation: Position TAN in TDE compartement on supports										Heir and tod, position tbd	
		Removal of top shielding	Scenario B		30		0.018		0.028				
11		Unscrew 2 rods fixing top shielding (downstream side)	3/+-0.4/+-0.5	3/+-1/+-0.5	5	0.020	0.002	2	0.003	wredge tool (size?)			
12		Unscrew 2 rods fixing top shielding (upstream side)	1,5/+-0.4/+-0.5	1,5/+-1/+-0.5	5	0.080	0.007	2	0.013			ve	
13		Attach lifting ring + lifting slings (downstream side)	3.5/0/+0.5	3.5/0.6/+0.5	5	0.020	0.002	1	0.002		slings (tbd)		
14		Attach lifting ring + lifting slings (upstream side)	1.5/0/+0.5	1.5/0.6/+0.5	5	0.080	0.007	1	0.007				
15	EN-HE	Remove top shielding		at safe distance	10	0.010	0.002	2	0.003				
20	BE-EA + EN-HE EN-HE	Removal of 2 marble blocks (upstream side) Attach 2 lifting rings + lifting slings	Scenario B 0.75/+-0.4/+0.5	0.75/+-0.4/+0.5	23 5	0.020	0.006	2	0.012	wredge tool	Lifting ring, slings (tbd)		
21	EIN-HE	Attach 2 mung rings + inting sings	0.75/+-0.4/+0.5	0.75/+-0.4/+0.5	5	0.020	0.002	2	0.003	wreuge tool	circing ring, stings (tod)		
22	BE-EA	Unscrew 4 bolts (2 each per block)	0.5/+-0.45/+-0.25	0.1/+-0.45/+-0.25	8	0.020	0.003	2	0.005				
23	EN-HE	Remove 2 marbles blocks		at safe distance	10	0.010	0.002	2	2				
	BE-EA + EN-HE		Scenario C	de surce distance	21	0.010	0.010	-					
31		Remove insulation sheet (from downstream side)	3.5/0/+0.25	4/0.6/+0.5	1	0.020	0.000	1	0.0.				
32	EN-HE	Attach 1 lifting ring + lifting slings (downstream side)	4/0/+0.25	4/0.6/+0.5	5		0.002	1	0.002				
33	EN-HE	Attach 1 lifting ring + lifting slings (upstream side)	1.5/0/+0.25	1.5/0.6/+0.5		_	007	1	0.007				
34	EN-HE	Removal of absorber box (to waste compartment - crane		at safe d		0.010		2	0.003				
34	EIN-HE	operation)		at safe o	10	0.010	2	2	0.003				
40	BE-EA	Preparation of 1 TAN U-shielding (for convertion into	Scenario C/D		12		0						
~		TAXN U-shielding)	Scenario C/D										
41	BE-EA	Remove 2 insulation sheets (from downstream side)		4/0.6/+0.5	1	0.05	0.000	1	0.000			- Pada /	
42	BE-EA	Unscrew 2 absorber position devices (downsta	5/+-0.2/-0.25	5/0/+0.5			902	1	0.002				
43	BE-EA	Unscrew 2 absorber position devices (upstreated)	1/+-0.2/-0.25	1.6/+0.5		0.080		1	0.007				
45	DE-EA	Remove bottom insulation sheet (from downs				0.080		1					
44	BE-EA	side)	3.5/0/+-0.25	+0.5		0.010	0.000		0.000				
50	BE-EA		Scenario C/D				0.160		0.240				
		Drilling of 2 fiducials supports on the side (marked											
51	BE-EA	blue) - each 15 min.	1+3/0.55/+0.15	1+3 .15		0.060	0.030	1.5	0.045				
52	BE-EA	Drilling of 5 survey target supports on the side (mark	1+3/0.55/+-0.35	1+ 0.35	50	0.060	0.050	1.5	0.075				
53	BE-EA	Drilling of 4 survey target supports upper (lateral	5/+-0.5/+-0.35	0 5/+-0.35	40	0.080	0.053	1.5	0.080				
53	BE-EA	shielding upstream side - marked in yellow) - each 10	5/+-0.3/+-0.35	5/+-0.35	40	0.080	0.053	1.5	0.080				
54	BE-EA	Drilling of 2 survey target supports upper (lower base		0/+-0.65/-0.6	20	0.080	0.027	1.5	0.040				
	0	shielding upstream side - marked in yellow) - each 10		0,10,00,00		0.000							
Ш		Assembly of TAXN			0.92	h	0.03	Totals	0.04				
00		Preparation: TAXN absorber box assembled and tested (Y- chamber installed in absorber clamps, water cooling circuit	not in presence of									Height of supports tbd, position tbd	
Ud		attached and tested, heating jacket installed and tested)	radioactivity									neight of supports toa, position toa	
60	BE-EA + EN-HE	Installation absorber positioning devices	Scenario C/D		55		0.030		0.040				
												Remove 2 bottom nuts of rods push up the rods to remove	
61	BE-EA	Install 2 absorber positioning devices (downstream side)	3/+-0.2/-0.25	3.5/0/+0.5	10	0.020	0.003	2	0.007			them (if blocked, remove the 2 top nuts as well and remove	
												rods after absorber box has been removed).	
62	BE-EA	Install 1 absorber positioning device (upstream side)	1/+-0.2/-0.25	0.5/-0.6/+0.5	15	0.080	0.020	1	0.020			as above	
63	EN-HE	Insertion of new absorber box into U-shielding (crane		at safe distance	10	0.010	0.002	2	0.003				
		operation)		er sone anstande		01020	01002	-	0.000				

- Preliminary WDP in work with WP8.
- Residual dose rate, working locations, and potential optimization in work together with HSE-RP.
- Activity potentially ALARA Lev.3 (to be confirmed).
- More iteration needed on this subject.

TAN/TAXN conversion

TAN shieldi	ng: specific a	ctivity in Bq/g		Top shielding	(5 months c.d.)	Cu-absorber (5 months c.d.)		
RN	6 m	1 y	2 y			RN	Contribution	
Fe-55	1.07E+03	9.45E+02	7.33E+02		to LL (%)		to LL (%)	
Mn-54	4.48E+02	2.98E+02	1.32E+02	Mn-54	93	Mn-54	35	
V-49	8.68E+01	5.91E+01	2.74E+01	Co-60	5	Co-60	30	
H-3	2.47E+01	2.40E+01	2.27E+01	Sc-46	1	Co-56	16	
Co-60	1.82E+01	1.71E+01	1.49E+01	Sum of LL	3.05E3	Sum of LL	1.24E4	

NB: Sum of LL>1 means an item need to be treated as radioactive material

□ Radionuclide inventory in the main TAN components have been computed.

□ Next step: transport classification (HSE-RP-CS)

□ RW declared in the HSE-RP-RWM SharePoint (classification to be confirmed).

0	RW Forecast 2024 ☆										7 🗄	01-My Items 02	2-By Group 02-By-Project 0.	3-By Facility 04-By	Producer	All Active* ~
	⊘ Status ~	$\ensuremath{\ensuremath{\bar{\ensuremath{\mathbb{T}}}}}$ Rad. Waste description $\ensuremath{{}^{\vee}}$	⊗ Year ⊽ ~	⊘ Quarters ∨	.8 RW Pr ♥ ~	Dep-Grp ~	\oslash Facility \bigtriangledown ~	⊘ Project ~	\oslash Other haz \sim ① Mass (tons)	∽ ⊗ Bulky ∽	① Volume (~	RP-AS co ·	 Non-radi ~ (1) CL (m3) ~ 	(1) TFA (m3) ~	① FMA (m3) ~ ① ID ↑
	Checked by RW- producer	HL-LHC - WP8 TAN	2026	Q4	Oliver Boettcher	BE-EA	LHC Machine	HL-LHC	None	42 Yes	7	Christophe Tromel	0	0	0	7 16
	Checked by RW- producer	HL-LHC - WP8: TAS	2026	Q2, Q3	Oliver Boettcher	BE-EA	LHC Machine	HL-LHC	None	20 Yes	6	Christophe Tromel	0	0	0	6 20

Take away points (I) - TAS

- Residual dose rates for relevant open detector configurations and isolated TAS assemblies have been estimated for both ATLAS and CMS and can be used to provide the necessary input to the WDP preparation.
- The radionuclide inventories for the ATLAS shielding, ATLAS TAS, and CMS TAS have also been estimated and the results have been provided to HSE-RP-CS for the transport classification.
- A possible solution for the transport container for the TAS has been found:
 - In case the dose rate at contact of the container will be greater than 2 mSv/h, additional shielding will be added in the transport container.
- The shift of LS3 to mid-2026 does not change the global picture, provided that the planning is translated accordingly. The transport classification most likely will not change and compensation measures are already being envisaged (i.e. additional shielding in the transport container).

Take away points (II) - TAN

- Close collaboration between WP8 and HSE-RP
- HSEP-RP studies for the TAN to TAXN conversion quite advanced, with several options considered depending on the availability of the SX6 building (presently as from mid-2026).
- The radionuclide inventories for the TAN components have been computed and the results will be soon provided to HSE-RP-CS for the transport classification.
- At present: TAN from Pt.5 will be transported via the tunnel; TAN from Pt.1 need an IP2container.
- Radioactive Waste: declared in HSE-RP-RWM SharePoint; classification to be confirmed.
- The shift of LS3 to mid-2026 does not change the global picture, provided that an ion run is kept before the end of Run 3 beam operation (assuming 4 weeks ion run) and that the conversion planning is translated by ~7.5 months. If one of the two is not confirmed, the RP impact would need to be re-evaluated.

HSE Radiation Protection

BACKUP SLIDES

Radiation Area classification

EDMS 810149

Synopsis of the radiological area classification at CERN. Airborne activity and surface contamination levels are expressed respectively in CA and CS values, as defined in the Swiss legislation for Radiation Protection (Swiss Federal Council, 2018). Colors are representative of the signalization in force at CERN, to visually identify different radiation areas.

Area	Annual	Ambient dose e	quivalent	Specific airborne	Specific surface
Alta	dose limit	Permanent occupancy	Low occupancy	radioactivity	contamination
Non-designated	1 mSv	0.5 µSv/h	2.5 μSv/h	0.05 CA	1 CS
Supervised	6 mSv	3 μSv/h	15 µSv/h	0.1 CA	1 CS
Simple Controlled	20 mSv	10 µSv/h	50 µSv/h	0.1 CA	1 CS
Limited Stay	20 mSv		2 mSv/h	100 CA	4000 CS
High Radiation	20 mSv		100 mSv/h	1000 CA	40000 CS
Prohibited	20 mSv		>100 mSv/h	>1000 CA	>40000 CS

Low-occupancy: < 20% working time

LS3 preparation (RP): Interventions

Interventions:

- □ The optimization of an intervention according to the ALARA principle and its final approval is based on a radiation protection risk assessment.
- All interventions of ALARA Level 2 and 3 are optimized based on individual RP risk assessments.
- When the radiological risk associated with an activity is classified as ALARA level 3 it must be reviewed and approved by the ALARA Committee.
- □ ALARA 3 preparation: iterative process which may profit form ALARA-like exercise (dry-runs in technical management meetings within departments).
- □ Collecting needs possibly through RSOs and presentations in the RSOC meetings.
- □ Defying a person coordinating the activity on-site/presenting the activity to the ALARA committee.
- DIMR: granularity to be defined (split by point? split by macro-activity).
- □ IMPACT: grouping to be discussed.

4.1. MEMBERSHIP OF THE ALARA COMMITTEE

The membership of a given ALARA Committee depends on the intervention being discussed. The presence of the following members or their deputies is obligatory:

- Chairperson: The Complex Manager.
- Scientific Secretary of the ALARA Committee.
- Radiation Safety Officer (RSO) of the owner/creator of the DIMR.
- Group Leader (or Sub-Detector Project Leader) responsible for the system or equipment.
- Technical Coordinator (for interventions in an experiment).
- The RP Group Leader.

The following members are optional:

- Department Heads.
- Equipment experts.
- RPO involved in the DIMR.
- Other RSOs/LEXGLIMOSs.
- RP physicist in charge of the installation.

