

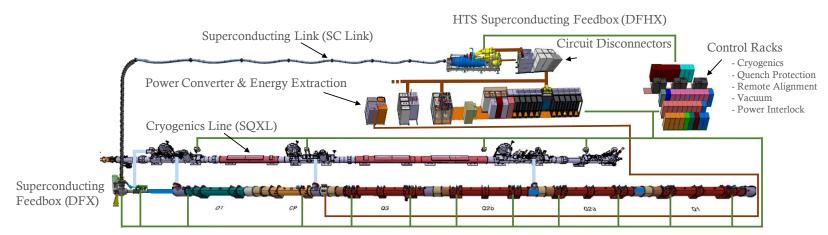
From HWC of the IT String to the HWC of the HL-LHC: Status and Preparation

S. Yammine on behalf of the MCF, MP3 and WP16

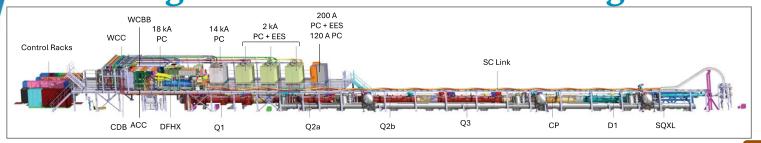
14th HL-LHC Collaboration Meeting, Genoa (Italy), 9th October 2024

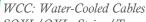
Outline

- I. Introduction
- II. String Validation Program
- III. Quality Control and Quality Assurance
- IV. Individual System and Short Circuit Tests
 - a) Cryogenics System
 - b) Alignment System
 - c) Warm Powering Systems
- V. Powering Tests for the Hardware Commissioning
- VI. Takeaway Message



Introduction


HL-HLC IT String Systems and Scope

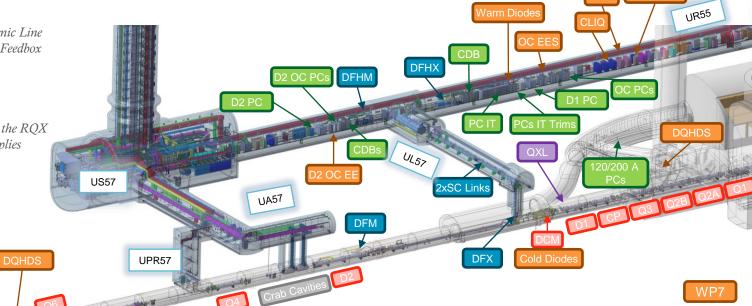


Magnet Line, Jacks & Alignment System

- Scope of the IT String is to represent, as best as reasonably achievable in a surface building, the various operation modes to study and validate the collective behaviour of the different systems of the HL-LHC's IT zone.
- Another key motivation is to test and optimize the **OC plans, IST, SCT and Powering Test procedures** to prepare to a smooth LS3
- Few differences w.r.t. tunnel configuration: SQXL includes more instruments, no beam-position monitors, no slope, beam-screens and beam vacuum excluded, etc.

Integration - HL-HLC IT String vs. HL-LHC

SOXL/OXL: String/Tunnel Cryogenic Line DFHX/DFX: HTS/LTS Electrical Feedbox

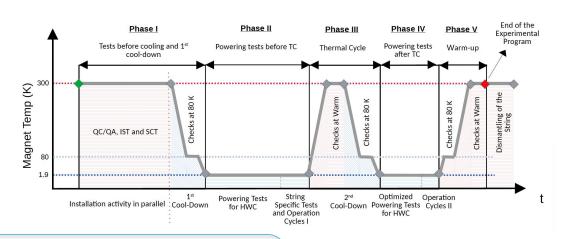

SC Link: Superconducting Link CDB: Circuit Disconnector Boxes

PC: Power Converter

EES: Energy Extraction System

CLIQ: Quench Protection System for the RQX

DOHDS: Quench Heater Power Supplies



String Validation Program

HL-LHC IT String Validation Program

HL-LHC IT String Validation Program EDMS no. 2664290

String Specific Tests:

- Cryogenics bayonet heat exchanger tests
- Crosstalk studies
- Flux jump measurements

Operation Cycles:

- Powering endurance tests
- FRAS with and without current in magnets
- Powering cycles in synergy with BE-OP

IST for:

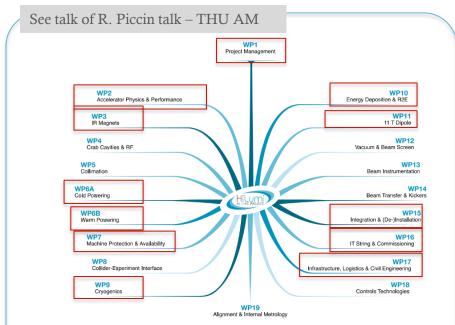
- Cryogenic system
- Warm powering
- Quench protection
- Full Remote Alignment System (FRAS)
- Magnet mechanical transfer function

QA/QC:

- Electrical quality assurance
- Continuity and polarity control
- Pressure and leak tests

Powering Tests for HWC:

- QPS IST
- *Powering tests from low to higher energy circuits:*
 - *PC performance (control loops, energy recovery)*
 - Quench detection and protection
 - *Performance of the link with magnets*
 - *Cryogenics operation during ramps and after quenches*
 - Movement of magnets after quenches and thermal cycle


Also included in the HL-LHC HWC

Coordination of the String Validation Program

From EDMS no. 2956328

String Validation Program Meetings

Test plan, procedure and results are documented and systematically reported in the concerned forums (MCF, SVPM, MP3 and TCC)

HL-LHC Magnet Circuit Forum (<u>link</u>) as forum to discuss the HL-LHC circuits systems;

LHC Magnet Circuits, Powering and Performance Panel - MP3 - (link) as responsible of the HWC powering procedures

Quality Control and Quality Assurance

Electrical Design Criteria for HL-LHC IT String and HL-LHC

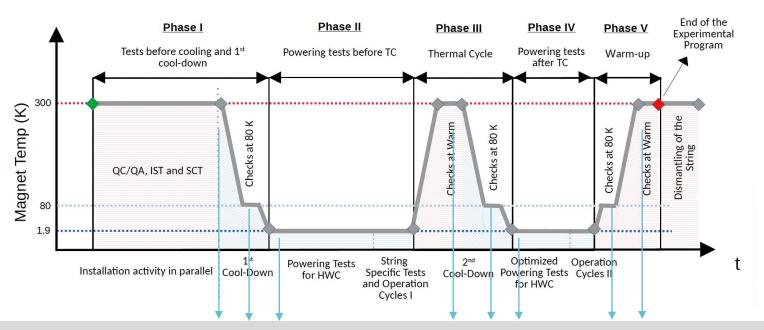
EDMS No.	Title
1963398	HL-LHC Electrical Design Criteria for the HL-LHC Inner Triplet Magnets
2060633	HL-LHC Electrical Design Criteria for the High Order Corrector Magnets
2187266	HL-LHC Electrical Design Criteria for the D1 Dipole
2363905	CIEMAT - MCBXF - ELECTRICAL DESIGN CRITERIA
2363906	IHEP - MCBRD - ELECTRICAL DESIGN CRITERIA
2363904	INFN - MBRD - D2 - ELECTRICAL DESIGN CRITERIA
2824470	Electrical Design Criteria for the HL-LHC Circuit Components operating at Room Temperature
2826527	Electrical Design Criteria for the HL-LHC Superconducting Link System
3002227	HL-LHC Electrical Design Criteria for the D1-DFX, D2-DFM Interconnection modules and Superconducting busbars in HL-LHC Line N1 and Line N2

Electrical Tests during Installation

Scope:

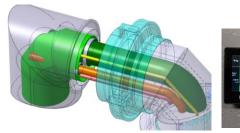
- Electrical Design Criteria (EDC) documents specify voltage withstand requirements during lifetime
- During installation, RT and SC components connected to the magnet circuits are electrically tested

Warm Powering and Cables


SC Link tests at RT (gHe conditions)

Magnet tests at Warm

Electrical Tests on Full System


ElQA Tests on Full System depending on conditions as defined in EDC Documents

Pressure and Leak Tightness Tests

Scope:

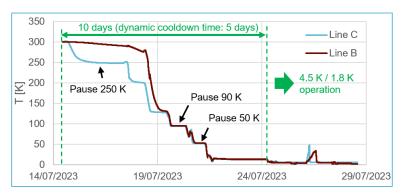
- Pressure tests are applied to pressurized systems based on NF-EN-13480 for metallic pipes
- Each system is tested for leak tightness: installation vacuum to helium (10⁻⁹ mbar.1/s) and to air (10⁻⁸ mbar.1/s)

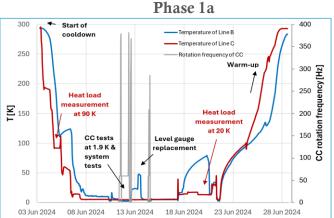
Clam Shells for magnet interconnections

Leak Tightness of the SC Link + DFHX

Leak Tightness of the String QXL (SQXL)

Individual System and Short Circuit Tests (applying to both IT String and HL-LHC)



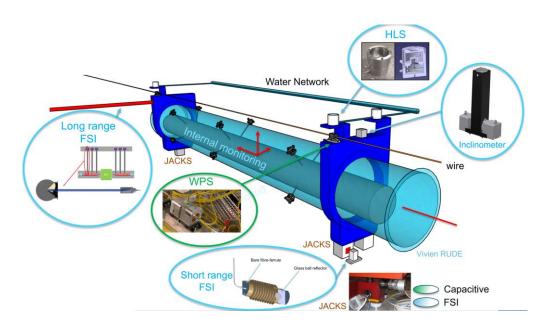


Test Procedures for HL-LHC IT String (and HL-LHC)

Туре	Test Procedure	EDMS no.	Doc. Status	Activity Status in String
IST	Energy Extraction Systems in the HL-LHC IT String	2744520	Released	Done in Q1 24
IST	Water-Cooled Cables in the HL-LHC IT String	2744521	Released	Done in 23
IST	PC and the Circuit Disconnector Boxes in the HL-LHC IT String	2767662	Released	Done in Q1/2 24
IST	Full Remote Alignment System in the HL-LHC IT String	2783832	Draft Version (to be launched soon)	Start in Q4 24
IST	Quench Heater Power Supplies in the HL-LHC IT String	3118980	Eng. Check	Start in Q4 24
IST	CLIQ in the HL-LHC IT String	3118978	Under Approval	Start in Q4 24
IST	Quench Detection and Supervision System in the HL-LHC IT String	<u>2912337</u>	To be done	Start in Q4 24
IST	Cryogenic System in the HL-LHC IT String - Phase 1a	<u>2910866</u>	Released	Done in Q3 23
IST	Cryogenic System in the HL-LHC IT String - Phase 1b	2974487	Released	Done in Q4 23
SCT	HL-LHC Inner Triplet String Short Circuit Tests	2744522	Released	Done in Q1/2 24

Commissioning of the Cryogenics – Phase 1 without Magnets

Phase 1c



Example of the SQXL in the HL-LHC IT String

Commissioning of the Fully Remote Alignment System

FRAS components to be tested:

- Wire Positioning System
- Hydrostatic Levelling system
- Inclinometers
- Longitudinal monitoring
- Cold mass monitoring
- Motor adapters
- Load and environmental sensors
- Software control and data flow
- Protection layers

Courtesy of M. Sosin, V. Barbarroux et al.

IST procedure for the HL-LHC IT String is being drafted by WP19 LHC-XMS-OP-0010, EDMS no. 2783832

Sequence for Warm Powering IST and SCT

Control, Signal and Power Cables QC

Water Cooling Electrical Distribution Network QC

Network QC

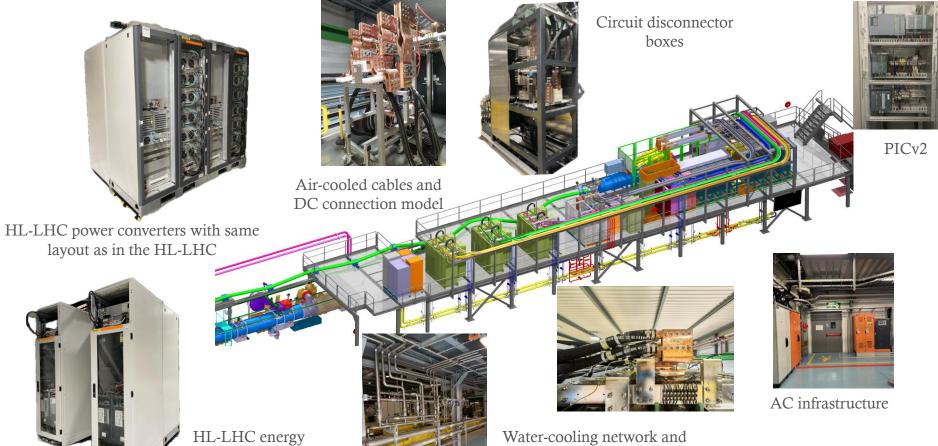
Water Cooled Cables IST

<u>LHC-XMS-OP-0002</u>

Connection of Systems to Infrastructure
(Power Cables, Electrical Distribution and Water Cooling)

- HSE Inspection (Hydraulic and Electrical)
- Power Converter and CDB IST

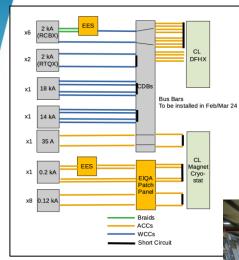
 Energy Extraction System IST

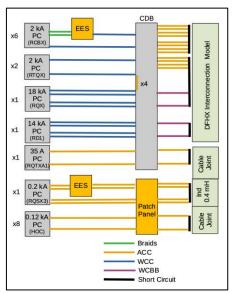

 LHC-XMS-OP-0001

 LHC-XMS-OP-0005
- Interlock checks
- PIC loop checks
- Extraction discharges
- Heat-run tests at ultimate current (~7.5 TeV)

Short Circuit Tests (with PICv2)

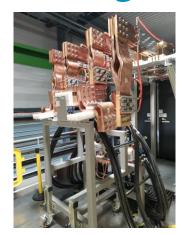
LHC-XMS-OP-0003


Warm Powering Infrastructure in the IT String


water-cooled cables

extraction systems

Short-Circuit Test Configuration in the String

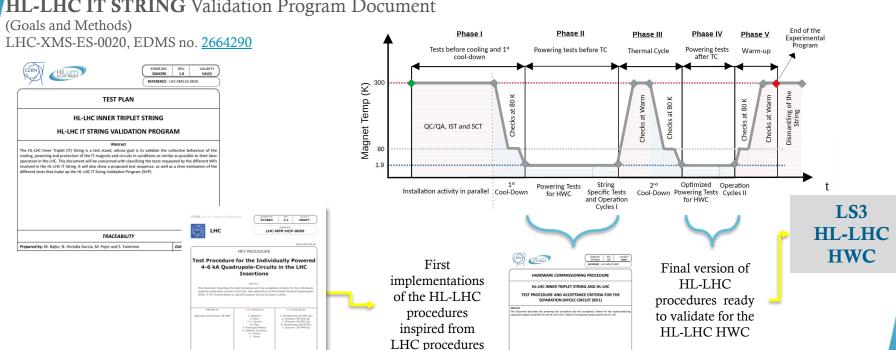


Phase 1 - Jan 2024

Phase 2 - May 2024

More information in H. Thiesen's talk – THU AM and the upcoming talk on IST and SCT in the same session

Powering Tests for the Hardware Commissioning (applying to both IT String and HL-LHC)

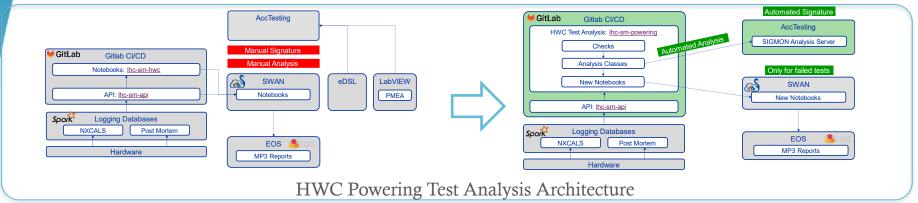

Test Procedures for HL-LHC IT String and HL-LHC

Туре	Test Procedure and Acceptance Criteria	EDMS no.	Doc. Status	Activity Status in String
HWC	ElQA Qualification of the Superconducting Circuits in the HL- LHC IT String	2746933	Draft Version	Start in Q4 24
HWC	Interlock Tests of the HL-LHC IT String Circuits	<u>2797308</u>	In preparation - planned for Q1 25	Start in Q4 25
HWC	Powering of the HL-LHC Inner Triplet (RQX)	<u>2771115</u>	In Preparation - planned for end of 24	Start in Q4 25
HWC	Powering of HL-LHC Separation Dipole (RD1)	<u>2771114</u>	Under Approval	Start in Q4 25
HWC	Powering of the HL-LHC IT Orbit Correctors (RCBX)	2771111	Under Approval	Start in Q4 25
HWC	Powering of the HL-LHC 200 A RQSX3 Circuit	2922509	Eng. Check	Start in Q4 25
HWC	Powering of the HL-LHC High Order Corrector (120 A) Circuits	2922510	Eng. Check	Start in Q4 25
HWC	Parameters for the HL-LHC Circuit Powering Tests	2771118	Eng. Check	Start in Q4 25
HWC	Parameters for the HL-LHC Quench Detection System	2920923	In Preparation - planned for Q1 25	Start in Q4 25

From String Validation Program Phases to HL-LHC HWC

HL-LHC IT STRING Validation Program Document

CCCBram.ch. 86-07-UHC-Sectio

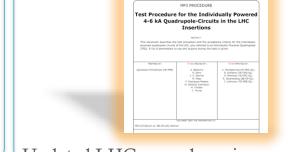

LHC HWC Procedures

HL-LHC HWC Procedures

https://edms.cern.ch/project/CERN-0000231253 SY

MP3 Ongoing Work on LHC HWC Powering Tests

Courtesy of A. Chmielinska

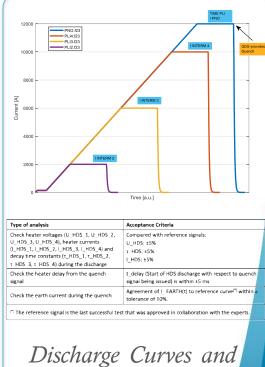


circuits to eq add

If a test fails, signature in PMEA check

Progress for LHC circuits as of July 24

Automated in AccTesting

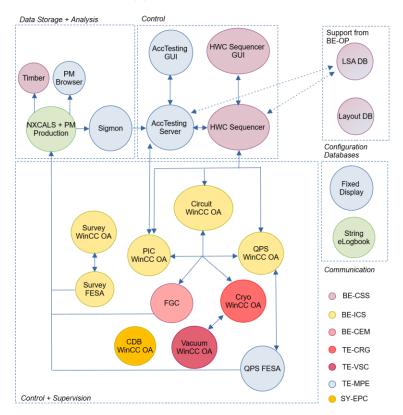


Updated LHC procedures in preparation

LHC-MPP-HCP-0009

Example of the HL-LHC RD1 Test Procedure

Test	Current level	Test description	HL-LHC IT String	LS3,4,5 HWC	Warm up > 90 K	TS > 3 Wk
PCC.23	I_PCC	Power converter configuration	X	X	Х	
PIC2	I_MIN_OP	Power interlock controller check	X	X	X	X
PLI1.c23	I_INTERM_1	Fast power abort via PIC at intermediate current 1	Х	X		
PLI2.d23	I_INTERM_2	Powering failure at intermediate current 2	х	Х		
PLI2.f23	I_INTERM_2	QDS provoked quench at intermediate current 2	х	Х		
PLI3.e23	I_INTERM_3	Slow power abort via PIC at intermediate current 3	х			
PLI3.c23	I_INTERM_3	Fast power abort via PIC at intermediate current 3	Х	Х	х	
PLI3.f23	I_INTERM_3	QDS provoked quench at intermediate current 3	х			
PLI4.s23	I_INTERM_4	Splice mapping till intermediate current 4	х	Х	Х	
PLI4.d23	I_INTERM_4	Powering failure at intermediate current 4	Х	х		
PLI4.f23	I_INTERM_4	QDS provoked quench at intermediate current 4	Х			
PNO.c23	I_PNO+I_DELTA	Fast power abort after a current plateau at I_PNO+I_DELTA	Х	х	Х	
PNO.f23	I_PNO	QDS provoked quench at I_PNO	x			
PNO.a23	I_PNO	Current cycle to I_PNO with splice measurement	х	Х	Х	Х
Total no. of S	teps		14	10	6	2

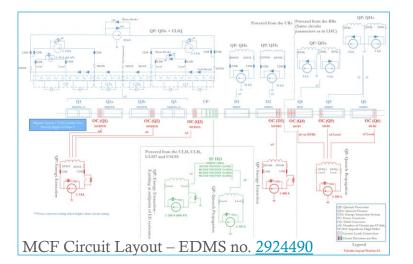

Acceptance Criteria

Powering Tests and Acceptance Criteria for the 14 kA RD1 Circuit

LHC-XMS-OP-0007, EDMS no. <u>2771114</u>

HWC Controls, Analysis and Supervision SW

- Control, analysis and supervision software development for the HL-LHC IT String and the HL-LHC is in line with the LHC software and the HL-LHC new hardware:
 - HL-LHC circuit families
 - New Tests in AccTesting based on procedures
 - Sequences in HWC Sequencer
 - New software for PICv2
 - Supervision for HL-LHC QDS
 - New QPS: EES, CLIQ and DQHDS
 - FRAS and survey system
 - New circuit synoptic
 - Etc.



Extension of the IT String to HL-LHC – WP16 HWC Mandate

- HL-LHC Hardware Commissioning phase encompasses the commissioning of all equipment that will be installed in the insertion regions and the new service areas:
 - New (or modified) superconducting circuits and related systems (power converters, circuit protection, cryogenics and technical infrastructures),
 - Other equipment, like Crab Cavities, beam instrumentation, FRAS and collimators, to prove their functionalities and reliability.
- Concerning the **equipment other than the superconducting circuits**, their commissioning will be full responsibility of the equipment owners. WP16 will help coordinating the interaction with other stakeholders and the interference with the commissioning of the superconducting circuits and the integration in the LHC operational environment.

Extension of the IT String to HL-LHC – WP16 HWC Mandate

- For the **superconducting circuits**, the HWC activity will pursue the preparation work to include the remaining circuits in close collaboration with MCF and MP3:
 - D2 and correctors (not included in the HL-LHC IT String),
 - Q4 swapped corrector planes at points 1 and 5/Q4 and Q5 translated towards non-IP sides with modified DSL,
 - Q10 including the sextupole at pts 1/5
- HWC activity will ensure the execution of detailed procedures for the qualification of the HL-LHC superconducting circuits and the protection functionalities (including their IST and SCT campaign).

В	C	D	E	F	G	Н	- 1	J	K	L	М	N	0	Р	Q
	Circuits for HiLumi	Magnet Type	Circuit Name	Number of circuits per IP side	Total number of circuits	I_nominal (7 TeV) [kA]	I_ultimate [kA]	L per circuit at nominal current [mH]	R per circuit [mΩ]	PC quad number	Required Precision Class of PCs	Required ramp rate from beam dynamics [A/s]	Maximum ramp rate** [A/s]	Required acceleratio n rate from beam dynamics [A/s2]	Maximum Acceleration rate** [A/s
	Trim Q1		RTQX1	1	4 (IR1/5)	2	2	69	1.35	4	2	2.09	2.09	0.16	0.16
	Trim Q1a		RTQXA1	1	4 (IR1/5)	0.035	0.035	34.5	226.16	4	4	3.32	3.32	0.35	0.35
	Trim Q3		RTQX3	1	4 (IR1/5)	2	2	69	1.2	4	2	2.09	2.09	0.11	0.11
	Orbit correctors Q1/2 - Horizontal/Inner	MCBXFB	RCBXH[1,2]	2	8 (IR1/5)	1.74	1.864	58.4	2.37	4	2	15	15	5	5
ಕ	Orbit correctors Q1/2 - Vertical/Outer	MCBXFB	RCBXV[1,2]	2	8 (IR1/5)	1.43	1.532	124.8	2.42	4	2	15	15	5	5
윤	Orbit correctors Q3 - Horizontal/Inner	MCBXFA	RCBXH3	1	4 (IR1/5)	1.593	1.709	107.1	1.99	4	2	15	15	5	5
5	Orbit correctors Q3 - Vertical/Outer	MCBXFA	RCBXV3	1	4 (IR1/5)	1.34	1.441	232.3	1.98	4	2	15	15	5	5
5	Superferric, order 2	MQSXF	RQ5X3	1	4 (IR1/5)	0.174	0.197	1530	14.31	4	3	2.42	2.42	0.48	0.48
	Superferric, order 3, normal and skew	MCSXF / MCSSXF	RCS[S]X3	2	8 (IR1/5)	0.099	0.112	213	54	4	4	1.4	1.4	0.28	0.28
	Superferric, order 4, normal and skew	MCOXF / MCOSXF	RCO[S]X3	2	8 (IR1/5)	0.102	0.115	220	54	4	4	1.4	1.4	0.28	0.28
	Superferric, order 5, normal and skew	MCDXF / MCDSXF	RCD[S]X3	2	8 (IR1/5)	0.092	0.106	120	54	4	4	1.4	1.4	0.28	0.28
	Superferric, order 6	MCTXF	RCTX3	1	4 (IR1/5)	0.085	0.097	805	54	4	4	1.4	1.4	0.28	0.28
	Superferric, order 6, skew	MCTSXF	RCTSX3	1	4 (IR1/5)	0.084	0.094	177	54	4	4	1.4	1.4	0.28	0.28
D1	Separation dipole D1	MBXF	RD1	1	4 (IR1/5)	12.11	13.231	24.84	0.31	1	0	12	12	2	2
20	Recombination dipole D2	MBRD	RD2	1	4 (IR1/5)	12.33	13.343	27.46	0.13	1	0	12	12	2	2
0	Orbit correctors D2	MCBRD	RCBRD[V,H]4	4	16 (IR1/5)	0.394	0.422	920	1.36	4	3	2	2	1	1
35	Individually powered quad Q4 (4.5K)	MQY	Same Circuit Paramter	f O4 i ID1 f	Y I- sh- LUC	Constant of		bu Turning and	S						
o	Orbit correctors Q4 (4.5K)	MCBY	Same Circuit Paramter	S TOT CO IN IN I	o as in the LHC,	Correction P	iane swapped	by furning and	Swaping or Ce	magnets					
ig.	Individually powered quad Q5 (4.5K)	MQML													
ø	Orbit correctors Q5 (4.5K)	MCBC	Same Circuit Paramter		4.5	ma fr sh	- 1116 05								
Ą	Individually powered quad Q6 (4.5K)	MQML	Same Circuit Paramte	rs for up, up and	a Correctors in	K1/5 as in th	e LHC; Up moi	ves to Iu m to	wards arc						
a	Orbit correctors Q6 (4.5K)	MCBC													
_	Individually powered quad Q10 (1.9K)	MQML	RQ10	2	8 (IR1/5)	5.39	5.83	21	0.4	1	2	16.167	16.167	2	2
65	Orbit correctors Q10 (1.9K)	MCB	RCB[V,H]10	2	8 (IR1/5)	0.055	0.06	6020	45.8	4	4	0.5	0.5	0.25	0.25
_	Lattice Sextupole (1.9K)	MS	RS[D,F][1,2]	2	8 (IR1/5)	0.55	0.6	432	7.5	4	4	5***	5	1***	1
9	Individually powered quad Q5 (4.5K)	MQY	RQ5	2	4 (IR6)	3.61	3.9	74	0.4	1	2	10.83	10.83	2	2
σ	Orbit correctors Q5 (4.5K)	MCBY	RCBY[V,H]5	2	4 (IR6)	0.088	0.1	5270	34.4	4	4	0.67	0.67	0.25	0.25

MCF Circuit Parameters Table – EDMS no. 2924490

Takeaway Message

- 2023 and 2024 have seen the first operational experience of the IT String. The team is looking forward to more exciting results in the months to come.
- Individual system and short circuit tests have been successfully executed and the cryogenic and warm powering systems are fully qualified without magnets in the IT String and provide a strong basis for the same tests in the tunnel.
- Lessons learnt passed onto the teams involved.
- Finalization of the procedures for the circuit powering is underway for IT String tests in 2025-2026 and will be optimized for the HL-LHC.

Thank you for your attention

