

# Alignment analysis on the low-beta quadrupoles during cold test

## Vivien RUDE 2024-10-10

#### On behalf :

Mateusz SOSIN Praneeth Sarvade, Daniel Szarata Clara Cala Franco Julia Calmels Carlo PETRONE Mariano PENTELLA Patrick BESTMANN

14th HL-LHC Collaboration Meeting, Genoa (Italy), 7-10 October 2024

## Outline

- Alignment Objectives (3 objectives)
- Internal monitoring configuration
- FSI measurements on different Q2
  - Impact of transport on alignment
  - Impact of pumping on alignment
  - Impact of cooling down on alignment
- FSI measurements on Q3 (at Fermilab and at CERN)
- Mechanical and magnetic axes behaviour during cooling down



#### Internal monitoring for "special" components

#### Q1, Q2a, Q2b, Q3









#### **Mechanical Coordinate system**

- > Primary axis : Y : Regression line corresponding to the mechanical cold bore axis (determined from mechanical mole)
- Secondary axis : Z : Normal vector of the plane [Conn-D9, Conn-D10, NConn-D9, NConn-D10]  $\geq$
- Origin : Projection of the central cold feet on Y axis  $\geq$



HL-LHC PROJECT





## Alignment Objective n°1 : Fiducialisation



<u>Alignment requirement</u> <u>Position</u> : 40 μm (1σ)









## **Alignment Objective n°2 : Internal monitoring**



<u>Alignment requirement</u> Position : < 100 μm (1σ)



HILUM



#### **Alignment Objective n°3 : External monitoring**



## **Internal monitoring**

Alignment requirement Position : < 100 μm (1σ) Roll : < 400 μrad (1σ)







## Alignment analysis of the Q2s during cold test at CERN





#### **Measurement steps for Q2**



| Fiducialisation                                         | Transport | Ambient                                               | Under vacuum                          | Cooling down                                          |
|---------------------------------------------------------|-----------|-------------------------------------------------------|---------------------------------------|-------------------------------------------------------|
| Place 1 : Fiducialisation bene                          | ch        | F                                                     | Place 2 : Cold test bench             |                                                       |
| Mechanical measurement<br>→ mechanical mole measurement |           |                                                       | Mechanical measurement<br>→ FSI meas. |                                                       |
| Magnetic measurement<br>→rotating coil scanner          |           | Magnetic measurement<br>→ single-stretched wire (SSW) |                                       | Magnetic measurement<br>→ single-stretched wire (SSW) |



## Impact of transport on vacuum vessel and cold mass shape



#### Impact of transport and external temperature :

- The shape (in vertical) of the vacuum vessel is influenced by transport and temperature changes
  - $\rightarrow$  This can be modelized by a 2<sup>nd</sup> order polynomial
- The vertical slop of the cold mass is consistent with the vertical slope of the vacuum vessel





#### Impact of pumping on vacuum vessel and cold mass shape

#### Impact of pumping :

- The vacuum vessel's shape is distorted by pumping (up to 80 µm)
- This impact can be modelled and is repeatable
- Maximum difference between model and real observation is bellow 50  $\mu m$
- No significant movement of the cold mass inside the vacuum vessel





#### Impact of cooling down





## **Cooling down at Fermilab and CERN**







#### Mechanical measurements on Q3#01 at Fermilab and at CERN



## **Mechanical and magnetic measurements**









#### **Mechanical and magnetic measurements at different steps**



Q2a-P3 (LMQXFB02)

#### Mechanical and magnetic measurements at different steps



## **Mechanical and magnetic measurements at different steps**





Q2a-P3 (LMQXFB02)

COLD : SM18 Magnetic field



|         | Installation FSI<br>targets | Cryostating | CERN<br>Mechanical<br>Fiducialisation | CERN<br>Installation FSI<br>Sensors | CERN Cold test<br>Magnetic and<br>mechanical<br>measurement at<br>cold |
|---------|-----------------------------|-------------|---------------------------------------|-------------------------------------|------------------------------------------------------------------------|
| MQXFBP2 | CERN                        | CERN        |                                       |                                     |                                                                        |
| MQXFBP3 | CERN                        | CERN        |                                       |                                     |                                                                        |
| MQXFB03 | CERN                        | CERN        |                                       | Nov 2024                            |                                                                        |
| MQXFB04 | CERN                        | CERN        |                                       |                                     |                                                                        |
| MQXFB05 | CERN                        | CERN        |                                       |                                     | On going                                                               |
| MQXFA01 | Fermilab                    | Fermilab    |                                       |                                     | On going                                                               |
| MQXFA02 | Fermilab                    | Fermilab    | Dec 2024                              |                                     |                                                                        |



HILUMI



Q2-13



## Conclusions

Impact of transport on alignment

The shape (in vertical) of the vacuum vessel and the cold mass is influenced by transport and temperature changes

Impact of pumping on alignment

The vacuum vessel's shape is distorted by pumping (up to 80 µm)

Impact of cooling down on alignment

The cold mass goes down of 1.5 mm in average (between 1.3 mm to 1.8 mm)

Impact of quench on alignment

Elastic deformations (0.6 mm in longitudinal, 0.2 mm in vertical)

 Mechanical and magnetic axes behaviour during cooling down Same behaviour



## Thank you for your attention



Spare



#### **Multi-target FSI**

100000

10

1

0.1 0.01 -

0.001 -0.0001 -

1E-5-

ó

20000

Amplitude



*n*=2

#### **Impact of quench**





Accuracy FSI  $(1\sigma)$  : 0.03 mm



#### Radial : relative motion of the cold mass inside the vacuum vessel





## **Our needs from Fermilab for Q1/Q3 (For Survey)**

#### In the same coordinate system :

#### Coordinate systems

- > Primary axis : Y : Regression line corresponding to the mechanical cold bore axis (determined from mechanical mole)
- Secondary axis : Z : Normal vector of the plane [Conn-D9, Conn-D10, NConn-D9, NConn-D10]
- > Origin : Projection of the central cold feet on Y axis

#### Cold mass

- Reference points of the cold mass : D9, D10, D11 (Conn and NConn)
- Mechanical mole measurement in the cold bore
- Magnetic measurement with Rotating coil scanner
- Magnetic field direction

#### Vacuum Vessel

Fiducials on the vacuum vessel

