Reliability studies on uQDS, PDSU and PDSU-BIS interface for the IT protection

L. Felsberger, D. Westermann, D. Wollmann

Acknowledgements to R. Denz, C. Martin, T. Podzorny, I. Romera Ramirez, J. Steckert, J. Uythoven

Introduction

Universal Quench Detection System (uQDS):

- Detect magnet quench
- Trigger PDSU
- **Trigger FPA loop, Diagnostics**

Protection Device Supervision Unit (PDSU):

- (Re-)Trigger magnet protection systems
- Trigger beam dump
- Detect spurious magnet protection firing
- Trigger FPA loop, **Diagnostics**

Beam Interlock System (BIS):

- Transmit beam dump request
- Diagnostics

Main failure modes:

- Missed magnet protection and beam dump (target for LHC systems 1 in 1000 years)
- Spurious magnet protection and beam dump (target for LHC 1 in 1 year)

 \rightarrow Reliability analysis crucial

Reliability Analysis Methodology

Risk identification

and quantification

Top-Level Failure Modes, Effects and Criticality Analysis (FMECA)

• Identify system, functions, associated risks and hazards and possible end-effects

Accelerator Risk Matrix

• Quantify reliability requirements to mitigate risks and hazards

Top-Down reliability model

• Capture system structure, redundancies, critical/non-critical parts, demand, inspection rates

Risk estimation and mitigation

Component-Level FMECA

• Analyse detailed sub-system design to identify their failure probabilities for each end-effect

\rightarrow Design qualification

• Feed results from Component-Level FMECA into Top-Down FTA to qualify design or require design improvements

• Magnet quench

• Magnet quench • uQDS detection

- Magnet quench
- uQDS detection
- 6 PDSUs triggered

HL Annual Meeting, Genova, 10/10/2024, Lukas Felsberger 7 and 7 and 7 7

- Magnet quench
- uQDS detection
- 6 PDSUs triggered
- Beam dump & magnet protection activated

- Magnet quench
- uQDS detection
- 6 PDSUs triggered
- Beam dump & magnet protection activated
- PC stopped (beam dump via PIC not fast enough)

CERN

HL Annual Meeting, Genova, 10/10/2024, Lukas Felsberger 12 12

Courtesy of J. Spasic

[See also talks by C.](https://indico.cern.ch/event/1421594/contributions/6017965/attachments/2943081/5171393/20241008_CHernalsteens_HLAnnualMeeting24_fast_failures_round_flat.pdf) Hernalsteens and [T. Podzorny](https://indico.cern.ch/event/1421594/contributions/5979629/)

USC/UJ

Top-Down Reliability Models

Magnet Protection Beam Dump/Spurious Firing

Magnet protection model ignores beam dump functionality (covered in spurious firing model) Spurious firing model ignores magnet protection functionality (covered in magnet protection model)

uQDS & PDSU Hardware

• **uQDS and PDSU share designs of hardware modules**

uQDS & PDSU Hardware

• **uQDS and PDSU share designs of hardware modules**

uQDS & PDSU Hardware

• **uQDS and PDSU share designs of hardware modules**

Q1,Q2,Q3,BB,SCL CT/IFS/interface box 20.0 FITS/channel (to uQDS)

FITS: Failures in 10^9 hours (~10^5 years)

HDS/CLIQ

uQDS & PDSU FMECA

- **uQDS and PDSU share designs of hardware modules**
- **Detailed FMECA carried out for**
	- Analogue monitoring channels (similar between uQDS and PDSU)
	- Digital Platform (identical between uQDS and PDSU)
	- Approximate (pessimistic) FMECA for other modules & interfaces
- **Relevant failure mode types for magnet protection & beam dump**
	- Blind unsafe failure (detected upon commissioning or demand)
	- Blind unsafe failure (detected every fill/ramp)
	- Detected unsafe failure (visible in supervision)

Heaters + CLIQ

Passive Mid-Plane PSU PSU Digital Platform Digital Platfor
(FPGA) Triggers i
L
S nterlocks 0 FITS | 0 FITS | 16.7 FITS | 9.9 FITS/path (to PDSU) 16.7 FITS 4.0 FITS (BB&SCL)

uQDS & PDSU FMECA

- **uQDS and PDSU share designs of hardware modules**
- **Detailed FMECA carried out for**
	- Analogue monitoring channels (similar between uQDS and PDSU)
	- Digital Platform (identical between uQDS and PDSU)
	- Approximate (pessimistic) FMECA for other modules & interfaces
- **Relevant failure mode types for magnet protection & beam dump**
	- Blind unsafe failure (detected upon commissioning or demand)
	- Blind unsafe failure (detected every fill/ramp)
	- Detected unsafe failure (visible in supervision)

BIS

uQDS & PDSU FMECA

- **Component failure rate source is 217+ electronics reliability prediction & FMD91/2016 standard**
	- Values apply for indoor, stationary mission profile during useful lifetime
- **If end effect unclear, pessimistic choice taken**
- **Certain end effect assignments should be validated by functional tests in hardware**
	- E.g. behavior under 3.3V voltage rail drift, ADC behavior under reference voltage drift
- **FMECA process identified parts of design that may be optimized further for QDS CONS design for main dipole magnets**
	- E.g. placement of additional pull up/down lines in channel

CÉRN.

HL Annual Meeting, Genova, 10/10/2024, Lukas Felsberger 22

Top-Down Reliability Model – Beam Dump/Spurious Firing

- **Few pessimistic simplifications required**
- **HDS case shown, as CLIQ has additional redundancy in readout**
	- Clear separation of redundant paths as PDSU retriggering does not retrigger between paths A & B
- **BIS concentrator**
	- New CIBFX design
	- Originally developed for EPC use cases
	- [Reliability study as part of BISv2](https://edms.cern.ch/document/2641122/1) reliability study

uQDS PDSU

BIS

Results – Failure Rates

Target

Repair/Inspection Policy:

- **Commissioning: 1 operational (op) year = 7200 hours/300 days**
- **Ramp detection interval: 12 hours**
- **Reaction to Supervision: 12 hours**

Magnet protection: 128 instances that can have a single quench Beam dump: 216 instances that can have a spurious trigger

- **Maximum number of failures when the demand interval approaches the commissioning interval**
	- Magnet protection less reliable, mainly due to longer chain of systems in critical path
- → **For both protection functions the reliability target is comfortably met.**
	- \rightarrow But under the condition of regular systematic testing

Commissioning interval Magnet protection

Failures per 1000 years in IT systems for different demand intervals

Repair/Inspection Policy:

- **Commissioning:** *1 or 3* **operational years**
- **Ramp detection interval: 12 hours**
- **Reaction to Supervision: 12 hours**

Magnet protection: 128 instances that can have a single quench Beam dump: 216 instances that can have a spurious trigger

- **With a commissioning interval of 3 years instead of 1 year, the number of failures increase**
	- Mainly due to the probability of blind failures accumulating that are only visible in commissioning or on demand.
		- Difference smaller if demand rate is higher
- → **With 3-year intervals, the reliability target is not met**
- → **Yearly quench test is recommended**

System Monitoring & Testing Magnet protection

Failures in 1000 years - Magnet protection demand every 12.8 years - different fill inspection intervals

Repair/Inspection Policy:

- **Commissioning: 1 operational (op) year**
- **Ramp detection interval: 12 hours** → **7200 hours**
- **Reaction to Supervision: 12 hours** → **7200 hours**

Magnet protection: 128 instances that can have a single quench Beam dump: 216 instances that can have a spurious trigger

• **Strong impact of less frequent/imperfect testing**

- Only a small increase of about 1.1E-05, if the failures are detected and repaired after 72 hours.
- Maximum of 6.8E-01 failures if the failures are detected for the first time during yearly commissioning.
	- This assumes an interlock of operation (SIS) if both critical paths lose supervision.

→ **Monitoring & ramp testing is crucial for protection function!**

 \rightarrow Extending coverage yields additional reliability margins

\rightarrow Detected problems can be fixed after fill

 \rightarrow Do not need to stop operations

Conclusions & Next Steps

- **A reliability model for the quench protection and beam dump functions of the IT shows**
	- The foreseen uQDS, PDSU and BIS concentrator hardware design conforms with the reliability requirements
	- This is under the condition that
		- yearly commissioning tests are performed (IST) to check the integrity of the system and all interfaces
		- an automated test during ramp is executed every LHC fill as part of a sequencer task to check integrity of the system
- **Follow-up of the study**
	- The uQDS/PDSU FMECA analysis results should be validated by selected HW functional tests/simulations
	- Availability aspects of the system to be quantified and checked against operational data
	- An analysis of critical firm- and software and configuration management should complement the hardware study
- **In view of the consolidation of the LHC main dipole QDS system**
	- The reliability model should be adapted, and pessimistic assumptions refined
	- Design improvements triggered by uQDS/PDSU FMECA analysis should be implemented if possible

Protection System Life Cycle

Clear and exhaustive specifications of the project

Machine Protection systems development follows defined life-cycle

Ensures that risks are mitigated

Inspired by IEC 61508 and adapted for CERN context

The scope of the uQDS & PDSU reliability analysis is to

- Identify risks and hazards and quantify requirements for their mitigation
- Qualify the detailed hardware design according to the defined requirements

Component-Level FMECA - Introduction

\bigcirc

Failure Modes, Effects, and Criticality Analysis (FMECA)

Purpose: identify potential failure modes of individual components within a system & quantify G failure impact at system level

FMECA Process Key steps

- **1. Using Bill of Materials, do a component-wise Failure Rate Prediction.**
	- Mainly based on 217Plus standard (2015/RIAC, but also available: Telcordia TR/SR, MIL-217, NSWC). Completed by manufacturer and test data.
	- Requires definition of mission profile/environment as well as operating conditions for individual components
- **2. Identification & apportionment of component failure modes**
	- i.e., capacitor -> {open, param. change, short}.
	- Based on handbooks (MIL-HDBK338, FMD2016).
- **3. Assigning end-effects to each failure mode of every component of the system.**
	- i.e., Capacitor C1: open -> no effect, short -> false dump, param. change -> blind failure.

Screenshot of Isograph Reliability Workbench (tool used for FMECA analysis)

Top-Down Reliability Model – Magnet Protection

- **Quench protection strategy is inherently redundant**
- **For single coil quench, triple redundant detection method & each of them redundant in hardware**

- **For single coil fault, triple redundant detection method & each of them redundant in hardware**
- **Quench protection strategy is inherently redundant**

CIBFx+CIBF or only CIBFx?

Failures in 1000 years - Beam Dump/Spurious Firing with and without CIBF

- Depending on the demand rate, the additional CIBF reduces the number of faults per 1000 years by **0 to 2.20E-05**.
- In the relevant range of 0.0046 spurious firings per year per HDS/CLIQ (1 spurious firing per year), the influence is with a difference of about 3.24E-08 to 3.24E-09 almost negligible.

Failures per 1000 years

Failures per 1000 years

Design qualification – Analytic Approach – Magnet Protection

- **An analytical approach was chosen over a simulation approach for time reasons and results are consistent**
- **The minimal cut set method was used to consider various inspection intervals and repair actions**

