Reliability studies on uQDS, PDSU and PDSU-BIS interface for the IT protection

L. Felsberger, D. Westermann, D. Wollmann

Acknowledgements to R. Denz, C. Martin, T. Podzorny, I. Romera Ramirez, J. Steckert, J. Uythoven

Introduction

Universal Quench Detection System (uQDS):

- Detect magnet quench
- Trigger PDSU
- Trigger FPA loop, Diagnostics

Protection Device Supervision Unit (PDSU):

- (Re-)Trigger magnet protection systems
- Trigger beam dump
- Detect spurious magnet protection firing
- Trigger FPA loop, Diagnostics

Beam Interlock System (BIS):

- Transmit beam dump request
- Diagnostics

Main failure modes:

- Missed magnet protection and beam dump (target for LHC systems 1 in 1000 years)
- Spurious magnet protection and beam dump (target for LHC 1 in 1 year)

 \rightarrow Reliability analysis crucial

Reliability Analysis Methodology

Risk identification and quantification

Top-Level Failure Modes, Effects and Criticality Analysis (FMECA)

• Identify system, functions, associated risks and hazards and possible end-effects

Accelerator Risk Matrix

• Quantify reliability requirements to mitigate risks and hazards

Top-Down reliability model

• Capture system structure, redundancies, critical/non-critical parts, demand, inspection rates

Risk estimation

and mitigation

- Component-Level FMECA
 - Analyse detailed sub-system design to identify their failure probabilities for each end-effect

\rightarrow Design qualification

 Feed results from Component-Level FMECA into Top-Down FTA to qualify design or require design improvements

• Magnet quench

Magnet quenchuQDS detection

- Magnet quench
- uQDS detection
- 6 PDSUs triggered

- Magnet quench
- uQDS detection
- 6 PDSUs
 triggered
- Beam dump & magnet protection activated

- Magnet quench
- uQDS detection
- 6 PDSUs
 triggered
- Beam dump & magnet protection activated
- PC stopped (beam dump via <u>PIC not fast</u> <u>enough</u>)

See also talks by <u>C.</u> Hernalsteens and T. Podzorny

enough)

Tunne

USC/UJ

16 x HDS

8 x HDS

8 x HDS

16 x HDS

Courtesy of J. Spasic

HL Annual Meeting, Genova, 10/10/2024, Lukas Felsberger

Top-Down Reliability Models

Magnet Protection

Beam Dump/Spurious Firing

Magnet protection model ignores beam dump functionality (covered in spurious firing model) Spurious firing model ignores magnet protection functionality (covered in magnet protection model)

uQDS & PDSU Hardware

 uQDS and PDSU share designs of hardware modules

uQDS & PDSU Hardware

 uQDS and PDSU share designs of hardware modules

uQDS & PDSU Hardware

 uQDS and PDSU share designs of hardware modules

20.0 FITS/channel (to uQDS) Q1,Q2,Q3,BB,SCL

HDS/CLIQ CT/IFS/interface box

uQDS & <u>PDSU</u> FMECA

- uQDS and PDSU share designs of hardware modules
- Detailed FMECA carried out for
 - Analogue monitoring channels (similar between uQDS and PDSU)
 - Digital Platform (identical between uQDS and PDSU)
 - Approximate (pessimistic) FMECA for other modules & interfaces
- Relevant failure mode types for magnet protection & beam dump
 - Blind unsafe failure (detected upon commissioning or demand)
 - Blind unsafe failure (detected every fill/ramp)
 - Detected unsafe failure (visible in supervision)

BIS

PDSU

Heaters + CLIQ

uQDS

FITS: Failures in 10^9 hours (~10^5 years)

FITS: Failures in 10⁹ hours (~10⁵ years) PDSU uQDS Voltage taps, IFS, patch panel aters + CLIQ 13.8 FITS/channel 2.Q3.BB.SCL (coil) 0 FITS per channel (coils) Monitoring Monitoring Channel Channel 11.4 FITS per channel (coils) 4.0 FITS (coils) 9.9 FITS/path (to PDSU)

- uQDS and PDSU share designs of • hardware modules
- **Detailed FMECA carried out for** •
 - Analogue monitoring channels (similar between uQDS and PDSU)
 - Digital Platform (identical between uQDS and PDSU) •
 - Approximate (pessimistic) FMECA for other modules & • interfaces
- **Relevant failure mode types for magnet** • protection & beam dump
 - Blind unsafe failure (detected upon commissioning or demand) •
 - Blind unsafe failure (detected every fill/ramp) ٠
 - Detected unsafe failure (visible in supervision) •

uQDS & PDSU FMECA

- **Component failure rate source is 217+ electronics** • reliability prediction & FMD91/2016 standard
 - Values apply for indoor, stationary mission profile during useful • lifetime
- If end effect unclear, pessimistic choice taken •
- Certain end effect assignments should be • validated by functional tests in hardware
 - E.g. behavior under 3.3V voltage rail drift, ADC behavior under • reference voltage drift
- **FMECA** process identified parts of design that ۲ may be optimized further for QDS CONS design for main dipole magnets
 - E.g. placement of additional pull up/down lines in channel

CERN

Top-Down Reliability Model – Beam Dump/Spurious Firing

- Few pessimistic simplifications required
- HDS case shown, as CLIQ has additional redundancy in readout
 - Clear separation of redundant paths as PDSU retriggering does not retrigger between paths A & B
- BIS concentrator
 - New CIBFX design
 - Originally developed for EPC use cases
 - Reliability study as part of <u>BISv2</u>
 <u>reliability study</u>

BIS

PDSU

uQDS

Results – Failure Rates

Target

Repair/Inspection Policy:

- Commissioning:1 operational (op) year = 7200hours/300 days
- Ramp detection interval: 12 hours
- Reaction to Supervision: 12 hours

Magnet protection: 128 instances that can have a single quench Beam dump: 216 instances that can have a spurious trigger

- Maximum number of failures when the demand interval approaches the commissioning interval
 - Magnet protection less reliable, mainly due to longer chain of systems in critical path
- → For both protection functions the reliability target is comfortably met.
 - \rightarrow But under the condition of regular systematic testing

Commissioning interval Magnet protection

Failures per 1000 years in IT systems for different demand intervals

Repair/Inspection Policy:

- Commissioning: <u>1 or 3 operational years</u>
- Ramp detection interval: 12 hours
- Reaction to Supervision: 12 hours

Magnet protection: 128 instances that can have a single quench Beam dump: 216 instances that can have a spurious trigger

- With a commissioning interval of 3 years instead of 1 year, the number of failures increase
 - Mainly due to the probability of blind failures accumulating that are only visible in commissioning or on demand.
 - Difference smaller if demand rate is higher
- → With 3-year intervals, the reliability target is not met
- \rightarrow Yearly quench test is recommended

System Monitoring & Testing Magnet protection

Failures in 1000 years - Magnet protection demand every 12.8 years - different fill inspection intervals

Repair/Inspection Policy:

- Commissioning: 1 operational (op) year
- Ramp detection interval: 12 hours → 7200 hours
- Reaction to Supervision: 12 hours → 7200 hours

Magnet protection: 128 instances that can have a single quench Beam dump: 216 instances that can have a spurious trigger

• Strong impact of less frequent/imperfect testing

- Only a small increase of about 1.1E-05, if the failures are detected and repaired after 72 hours.
- Maximum of 6.8E-01 failures if the failures are detected for the first time during yearly commissioning.
 - This assumes an interlock of operation (SIS) if <u>both</u> critical paths lose supervision.

→ Monitoring & ramp testing is crucial for protection function!

→ Extending coverage yields additional reliability margins

\rightarrow Detected problems can be fixed after fill

 \rightarrow Do not need to stop operations

Conclusions & Next Steps

- A reliability model for the quench protection and beam dump functions of the IT shows
 - The foreseen uQDS, PDSU and BIS concentrator hardware design conforms with the reliability requirements
 - This is under the condition that
 - yearly commissioning tests are performed (IST) to check the integrity of the system and all interfaces
 - an automated test during ramp is executed every LHC fill as part of a sequencer task to check integrity of the system
- Follow-up of the study
 - The uQDS/PDSU FMECA analysis results should be validated by selected HW functional tests/simulations
 - Availability aspects of the system to be quantified and checked against operational data
 - An analysis of critical firm- and software and configuration management should complement the hardware study
- In view of the consolidation of the LHC main dipole QDS system
 - The reliability model should be adapted, and pessimistic assumptions refined
 - Design improvements triggered by uQDS/PDSU FMECA analysis should be implemented if possible

Protection System Life Cycle

Clear and exhaustive specifications of the project

Machine Protection systems development follows defined life-cycle

Ensures that risks are mitigated

Inspired by IEC 61508 and adapted for CERN context

The scope of the uQDS & PDSU reliability analysis is to

- Identify risks and hazards and quantify requirements for their mitigation
- Qualify the detailed hardware design according to the defined requirements

Component-Level FMECA - Introduction

M

Failure Modes, Effects, and Criticality Analysis (FMECA)

Purpose: identify potential failure modes of individual components within a system & quantify failure impact at system level

<u>Id</u>	<u>Component</u>	Description	<u>failure_mode</u>	<u>Alpha</u>	Component Failure Rate	Failure Mode Rate	End Effect
1.1	C2	-±10% 50V X7R SMD Multilayer Chip Ceramic Capacitor	Open	9	0.357	0.032	Spurious Protection
1.1	C2	-±10% 50V X7R SMD Multilayer Chip Ceramic Capacitor	Parameter change	61	0.357	0.218	No effect
1.1	C2	-±10% 50V X7R SMD Multilayer Chip Ceramic Capacitor	Short	30	0.357	0.107	Blind channel

FMECA Process Key steps

- 1. Using Bill of Materials, do a component-wise Failure Rate Prediction.
 - Mainly based on 217Plus standard (2015/RIAC, but also available: Telcordia TR/SR, MIL-217, NSWC). Completed by manufacturer and test data.
 - Requires definition of mission profile/environment as well as operating conditions for individual components
- 2. Identification & apportionment of component failure modes
 - i.e., capacitor -> {open, param. change, short}.
 - Based on handbooks (MIL-HDBK338, FMD2016).
- 3. Assigning end-effects to each failure mode of every component of the system.
 - i.e., Capacitor C1: open -> no effect, short -> false dump, param. change -> blind failure.

🛐 😂 🛃 🐚 🥬	X 🖿 🧉	5 G G	X ∣ • 7 ⊒ Grid	Plot	🗈 💖 🙀 217 Plot & Grid 🥏 Li	Plus braries 🍕	Diode Parts Library	Reports	• 0		
		1	Prediction blocks • General • 🚰 🗸 🦹 All rows • 💭 🙀								
			1	0	Part number	Descript	tion		Category	Failure rate	
🕀 🦲 6:Bear	nnector:FR=	2		0-2	Beam 2			System Block	940		
@ _ 3:Pow	R=89.63	2	1	10TPB47M	±20% 10	V ESR 0R07 Tant	alum Solid C	Capacitor	0.9288		
+ 4:Bear	r:FR=0.4674	2	3	10TPB47M	±20% 10	V ESR 0R07 Tant	alum Solid C	Capacitor	0.9279		
⊕ _ 5:Be	Block Propertie	s - 2.2 : ±20%	10V ESR	0R07 Tantalu	m Solid Capacitor wit	h Condu	? X	m Solid C	Capacitor	0.9279	
э 🔲 7:Ве								m Solid C	Capacitor	0.9279	
Deratings	General Para	meters Rate/	Pi Factor	Notes H	yperlink			PROMs	External	2	
					_			ligger	External	0	
			Quantity:	1				igger	External	0	
		Adjustmen	t Factor:	1				igger	External	0	
		Year of Man	ufacture:	2020				DC with	IC, Plastic Encap	1.383	
		Du	ty Cycle:	1				pose Tra	Transistor	37.59	
		Cycli	ng Rate:	2				pose Tra	Transistor	37.59	
	A	mbient Temp, O	perating:	35				pose Tra	Transistor	37.59	
	/	Ambient Temp,	Non-Op .:	25				pose Tra	Transistor	37.59	
		Capaci	tor Type:	Aluminum		~		pose Tra	Transistor	37.59	
		Capacitance (Micro F):	47				pose Tra	Transistor	37.59	
		Elec Stress Ca	Ic Mode:	Calculated		~		pose Tra	Transistor	37.59	
	Voltage 5			0.1				pose Tra	Transistor	37.59	
		Operating Vo	tage (V):	1				pose Tra	Transistor	37.59	
	Rated Ambient-Case			10				pose Tra	Transistor	37.59	
				10				er Chip C	Capacitor	0.3395	
			inp rupe.	10				er Chip C	Capacitor	0.3503	
	Stress=	Temp=				OK	Cancel	er Chip C	Capacitor	0.3395	
L			2	58	CC0603_10NF_5.	±10% 50	V X7R SMD Multil	ayer Chip C	Capacitor	0.3503	
			2	55	CC0603_10NF_5.	±10% 50	V X7R SMD Multil	ayer Chip C	Capacitor	0.3395	
			2	59	CC0603_10NF_5.	±10% 50	V X7R SMD Multi	ayer Chip C	Capacitor	0.3503	
			2.56 CC0603_10NF_5 ±10% 50V X7R SMD Multilayer Ch				ayer Chip C	Capacitor	0.3503		
			2	50	CC0603_10NF_5.	±10% 50	V X7R SMD Multil	ayer Chip C	Capacitor	0.3503	
		2	51	CC0603_10NF_5.	±10% 50	V X7R SMD Multil	ayer Chip C	Capacitor	0.3503		
			2	57	CC0603_10NF_5.	. ±10% 50	V X7R SMD Multi	ayer Chip C	Capacitor	0.3395	
				18	CC0603_100NF_	±10% 50	V X7R SMD Multil	ayer Chip C	Capacitor	0.3396	
				19	CC0603_100NF_	±10% 50	V X7R SMD Multil	ayer Chip C	Capacitor	0.3396	
				13	CC0603_100NF_	±10% 50	V X7R SMD Multil	ayer Chip C	Capacitor	0.3529	
				20	CC0603_100NF_	±10% 50	V X7R SMD Multi	ayer Chip C	Capacitor	0.3396	
			2	21	CC0603_100NF	±10% 50	V X7R SMD Multil	ayer Chip C	Capacitor	0.3396	

Screenshot of Isograph Reliability Workbench (tool used for FMECA analysis)

BIS

PDSU

Heaters + CLIQ Q1,Q2,Q3,BB,SCL

UQDS 1A (and voltage taps) 35A trim Q1B Q1A UODS 1A Front-end Channe UQDS 1A Front-end Channel EE 131 EE 142 EE 141 EE 154 for U Q1A P4 for U Q1A P1 PA3 PA2 PB1 PB4 PA4 PA1 PB2 PB3 UQDS 1A Front-end Channel EE 121 EE 132 \odot for U Q1A P2 (-) $(\mathbf{+})$ UQDS 1A Front-end Channel for U_Q1A_P3 UQDS 1A Front-end Channe EE 224 EE 211 for U_Q1B_P3 \odot EE 111 EE 122 UQDS 1B (and voltage taps) EE 112 EE 124 Asymmetric detection: Coil-coil comparison of neighboring coils (PA3 - PA2, PA4 - PA1, PB1 - PB4, PB2 - PB3) Magnet symmetric detection: Comparison of magnet halves: (PA3 + PA4) - (PA4 + PA1), (PB1 + PB4) - (PB2 + PB3) Full symmetric detection: Comparison of Coil voltages between Q1A and Q1B UQDS 1B Front-end Channe LIODS 1B Front-end Channe EE 133 EE 144 EE 143 EE 153 for U Q1A P4 for U Q1A P1 UQDS 1B Front-end Channel EE 123 EE 134 for U Q1A P2 Reliability model assumes single coil UQDS 1B Front-end Channel for U Q1A P3 UQDS 1B Front-end Channel EE 222 EE 212 for U_Q1B_P3 quench

- Quench protection strategy is inherently redundant
- For single coil quench, triple redundant detection method & each of them redundant in hardware

Top-Down Reliability Model – Magnet Protection

Top-Down Reliability Model – Magnet Protection

- Quench protection strategy is inherently redundant
- For single coil fault, triple redundant detection method & each of them redundant in hardware

CIBFx+CIBF or only CIBFx?

Failures in 1000 years - Beam Dump/Spurious Firing with and without CIBF

- Depending on the demand rate, the additional CIBF reduces the number of faults per 1000 years by **0 to 2.20E-05**.
- In the relevant range of 0.0046 spurious firings per year per HDS/CLIQ (1 spurious firing per year), the influence is with a difference of about 3.24E-08 to 3.24E-09 almost negligible.

⁻ailures per 1000 years

Design qualification – Analytic Approach – Magnet Protection

- An analytical approach was chosen over a simulation approach for time reasons and results are consistent
- The minimal cut set method was used to consider various inspection intervals and repair actions

