

VAX modules

Jaime Pérez Espinós on behalf of WP12

14th HL-LHC Collaboration Meeting, Genoa (Italy), 10 October 2024

Contents

- Recall of VAX
- Planning
- Subsystem status and next steps
- Conclusions

Vacuum Assembly for eXperiments (VAX)

- For the purpose of this presentation:
 - VAX refers to VAX area (VAX + TAXS chamber + Q1-TAXS module)
 - VAX also includes service lines (pumping and/or venting lines) allowing to operate the experimental beam vacuum system

VAX area assemblies

Module configurations

SUBSYSTEM	ТҮРЕ	TOP ASSEMBLY	MAIN SUB-ASSEMBLY	VACUUM ASSEMBLY				
Q1-TAXS	ATLAS-A	LHCVAP0001						
	ATLAS-C	LHCVAP_0001						
	CMS L	LHCVAP_0001						
	CMS R	LHCVAP_0001						
	SPARE	LHCVAP_0001						
	ATLAS-A	LHCVAXX_0001	LHCVAXH_0001	LHCVAXH_0004				
	ATLAS-C	LHCVAXX_0002	LHCVAXH_0019	LHCVAXH_0021				
N # 1	CMS L	LHCVAXX_0002	LHCVAXH_0019	LHCVAXH_0021				
	CMS R	LHCVAXX_0002	LHCVAXX_0002 LHCVAXH_0019					
		LHCVAXX_0001 OR	LHCVAXH_0004 OR					
	SPARE (*)	LHCVAXX_0002	LHCVAXH_0019 (**)	LHCVAXH_0021 (***)				
	ATLAS-A	LHCVA1XB0001		LHCVAXH_0014				
	ATLAS-C	LHCVA1XB0002		LHCVAXH_0022				
	SPARE ATLAS	LHCVA1XB0001 OR		LHCVAXH_0014 OR				
M2	(*)	LHCVA1XB0002	LHCVA1XB0002					
	CMS L	LHCVA5XB0001	Potential soli	t into H_0013				
	CMS R	LHCVA5XB0001		H_0013				
	SPARE CMS	LHCVA5XB0001	right/left ver	SION H_0013				
	ATLAS-A	LHCVA1XC0001	Potential mergi	ng into H_{-0006}				
	ATLAS-C	LHCVA1XC0002		H_{-0006}				
	CMS L	LHCVA5XC0001						
М3	CMS R	LHCVA5XC0001	ATLAS and (CMS H_0006				
		LHCVA1XC0001 OR						
	SPARE (*)	LHCVA1XC0002 OR	LHCVAXH_0005 (**)	LHCVAXH_0006				
		LHCBA5XC0001						

M2 ATLAS-A

M2 ATLAS-C

(*) SPARE is stored in a dedicated configuration (assembly code written in black); it can be optionally transformed into another configuration (assembly code/s written in red)

(**) SPARE assembly is completed with lifting points, special tooling for handling, patch panels and protection covers

(***) SPARE requires bake-out jacket to be assembled with correct orientation

(****) SPARE requires right-angle valve to be assembled at correct configuration

Planning (from production to installation)

		2024					20	25			20	26			20	27			20	28		2029				
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Q1-TAXS	MODULE																	P1/5								
	SUPPORT Q1 + TOOLING																	P5								
	SUPPORT TAXS + TOOLING																	P1/5								
TAXS CHAMBER											P1								P5							
VAX M1	VACUUM COMPONENTS																									
	VACUUM ASSEMBLY																		P1/5			P1				
	MECHANICS (SUPPORT)																									
	MECHANICS (MECHANISM)																									
VAX M2	VACUUM COMPONENTS																									
	VACUUM ASSEMBLY																									
	FULL VACUUM ASSEMBLY																		P5		P1	P1				
	MECHANICS (SUPPORT)																									
	MECHANICS (MECHANISM)																									
VAX M3	VACUUM COMPONENTS																									
	VACUUM ASSEMBLY																		P5		P1	P1				
	MECHANICS (SUPPORT)																									
	MECHANICS (MECHANISM)																									
PUMPING LINES	ATLAS																					P1				
	CMS																		P5							

Conceptual design Final design Series supply and partial assembly Assembly, test and qualification Installation Deadline for installation

Installation dates extracted from WP8 Inwork planning CSR24

Q1-TAXS module

Q1-TAXS module - next steps

Main components:

- Tune-up manufacturing and qualification process of Q1-TAXS module with all stakeholders involved
- Manufacturing drawings of supports
- Tooling
 - Compression tool \rightarrow launch production
 - Extension tubes for coating → launch design and production
- Open points with potential impact on design
 - Supports \rightarrow installation process (MINOR)

HC	VAP	001						
STE	P	TAS	5K					
10		Tra	ceability of material					
20		Visi	ual inspection	TE-VSC-DLM				
30		Inst	tallation of NEG wafers and cabling					
40		Ele	ctrical continuity test	TE-VSC-BVO / ICM				
50	HCVA	P(002	- -				
60	STEP		TASK	ENTITY				
70	10		Traceability of material	TE-VSC-DLM				
80	20		Visual inspection		TE-VSC-DLM			
90	30		Vacuum leak test (include tooling to	block bellows)	TE-VSC-DLM			
	40		RGA (first 2x parts, TBC)		TE-VSC-BVO			
	50		Assembly to LHCVAP0009 configu	TE-VSC-DLM / SCC				
	60		aC coating	TE-VSC-SCC				
	70		Removal of Cu-OFE parts	TE-VSC-SCC				
	80		Visual inspection and adherence tes	t on sample/s	TE-VSC-SCC			
	90		Installation of covers to protect bea	TE-VSC-SCC				

VAX M1 and VAX M3

			20	24		2025				2026					20	27		2028				2029					
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4		
VAX M1	VACUUM COMPONENTS																										
	VACUUM ASSEMBLY																		P1/5			P1					
	MECHANICS (SUPPORT)																										
	MECHANICS (MECHANISM)																										
VAX M3	VACUUM COMPONENTS																										
	VACUUM ASSEMBLY																		P5		P1	P1					
	MECHANICS (SUPPORT)																										
	MECHANICS (MECHANISM)																										
	. (conf	figu	ratio	on, o	draf	ted										Mushrooms for handling,										
	or r of v	nan vacu ents	ufao uum , rel	ctur ı eas	ing sed											Ma su	anuf upp	acti ort a p	urin and rod	g dr me uce	[.] awi cha d	ngs nisr	of n,				
Hiluo	Bushi and syste	ings V-se em (of g eats deliv	guic of µ /ere	ling posi ed b	sys ition y W	tem ing 'P8	١		K							cc	N drav ollar	/lan wing cha	ufac gs fo ains	ctur or D s, pr	ing N1(odu)0 ced				

HL-LHC PROJECT

Jaime Pérez Espinós, VAX modules, 14th HL-LHC Collaboration Meeting, 10/10/24

VAX M1 and M3 - next steps

- Main components:
 - Submit ECR for new gate valve configuration for approval and launch order
 - Launch order for chain collars DN100 (qualification tests almost finished)
 - Design of flange M1-to-M2 (mechanism optimization is ongoing) \rightarrow JOB separated from rest of chambers
- Tooling:
 - Dedicated parts for Cu coating \rightarrow launch production
 - Dedicated chambers for aC coating/NEG coating \rightarrow launch design and production
- Open points with potential impact on design
 - Nominal gap M1-to-TAXS → could affect stroke of mechanism (MINOR)
 - Lifting points position (MINOR)
 - ATLAS M1 cabling integration/approach (MINOR)
 - Bake-out simplification under study → no bake-out jacket at valve body and Penning gauge; jacket retained at connection chamber (MINOR)
 - STAUBLI connectors
 - Bake-out simplification under study to minimize number of channels and cables (MINOR)
 - Design of compressed air connection to make it hard-rad compatible (TBC)
 - Impact of ATLAS integration study (TBC)
 - Outcome of ECR for gate valves (TBC)

Handling test campaign outcome

VAX M2

VAX M2 - next steps

- Main components:
 - Re-design of bake-out jackets
 - Launch order for right-angle valves
 - Finalize design optimization of mechanisms (DN40 connection + DN100 connection)
 - Finalize expansion joint design (interface to mechanism) → JOB separated from rest of chambers
- Tooling:
 - Dedicated chambers for aC coating/NEG coating \rightarrow launch design and production
- Open points with potential impact on design
 - Nominal gap M1-to-M2 and M2-to-M3 → could affect stroke of mechanism (MINOR)
 - Lifting points position (MINOR)
 - Re-orientation of rupture disk (TBC)
 - STAUBLI connectors
 - Bake-out simplification under study to minimize number of channels and cables (MINOR)
 - Design of compressed air connection to make it hard-rad compatible (TBC)
 - Impact of ATLAS integration study (TBC)
 - Study of reduction of number of pumping lines in CMS (MINOR)

Handling test campaign outcome

CERN

Pumping lines

Pumping lines - next steps

- Main components:
 - Design pumping lines of ATLAS
 - Optimize design of pumping lines of CMS in case of reduction of number of lines (study ongoing)
- Open points with potential impact on design
 - Study of reduction of number of pumping lines in CMS (MINOR)
 - Impact of ATLAS integration study
 - Vacuum line connection at top of ATLAS chimney (TBC)
 - Overall routing (MINOR)
 - Vacuum line connection to M2 (TBC)

Full understanding of access condition is required ⇒ BIG WHEEL TO BE ADDED AT OPEN CONFIGURATION (TBC)

Conclusions

- Production is foreseen to be finished by Q4 2025 for Q1-TAXS and VAX modules
- Vacuum tests and qualification are foreseen to be finished by Q2 2026 for Q1-TAXS and VAX modules
- Other qualification tests linked to remote handling connection are foreseen to be finished by Q4 2026
- Production of pumping lines is foreseen by Q1 2026 (lines) by Q1 2027 (lines + heating system) → finalization of integration (ATLAS) is required by end 2024
- Following delay on start of LS3, new dates for installation are foreseen
- Installation activities require more granularity in the planning
 - Separate lines for at least, Q1-TAXS module, VAX M1, VAX M2/M3, pumping lines and services (cabling and compressed air) should be considered
- Tests and commissioning should be integrated in the planning
 - Vacuum commissioning is usually decoupled from mechanical activity and is fully dependent on vacuum sectorization
 plannings at LHC and experiment sides must be correctly synchronized
 - Tests and commissioning can be vacuum related (leak tests, B/O tests, cabling acceptance, vacuum commissioning, etc.) and non-vacuum related (handling and robotic operation tests, survey measurements, etc.)

Thanks for your attention

Special thanks to WP12 members, and rest of WPs and teams involved

Jaime Pérez Espinós, 14th HL-LHC Collaboration Meeting, 10 October 2024

In-tunnel works sequence

23

AND ADDRESS AD

2. Deployment of the lines – VAX box

remaining in place

Compressible bellow and mechanism

connection

Actuators

 \checkmark Nothing can stay beyond the alignment plate lines during LS → dismountable last pipes

Problems identified:

- Mechanism accessible by the robot $? \rightarrow$ actuators very close to the wall
- Mechanism does not allow removal of M1

Options:

- Design of module 1 for ATLAS without Staublis (solves • the problem for the installation, not the remote actuation).
- Placing the mechanism by the level of the angle valve: ٠
 - Solves the remote actuation problem
 - Still on the way for the removal of M1
 - Implies dismantling an ~3m long tube during LS.
- Both options above combined.

115th HL-LHC WP8 Meeting (01/03/22)

