

14th HL-LHC Collaboration Meeting Genoa - 9th October 2024

Performance of the BGC in the LHC

D. Butti on behalf of the BGC collaboration

Outline

Introduction

- Beam Gas Curtain
- BGC as beam size monitor

Results from BGC operation

- visible and ultra-violet configurations
- emittance measurements
- impact of jet thickness
- ion run diagnostics

Beyond fluorescence

losses-based diagnostics

Conclusion

Beam Gas Curtain

Beam Gas Curtain principle

Conceived as overlap monitor for the Hollow Electron Lens

After HEL descoping, **reproposed as beam size monitor** for the main LHC beam:

- minimally-invasive
- ✓ simple beam imaging
- ✓ only option for Pb @INJ
- weak fluorescence signal, only suitable for avg measurements
- jet thickness affects measurement in vertical direction

Promising measurements during 2023 run (with ions) \rightarrow ongoing effort to move towards an operational device

BGC as beam size monitor

 $\sigma_H\equiv\sigma_{beam}$

top view

Because of the gas jet finite thickness, the BGC output is different in the two directions

Horizontal projection is unaffected \rightarrow used as indicator of data quality

Vertical projection includes jet distribution \rightarrow retrieving accurate beam size is more challenging

> **Horizontal** light profile = beam profile

Vertical light profile = convolution of beam and jet profiles

Fluorescence signal

BGC currently operates in two spectral domains

BGC VIS: visible line 585 nm

- lower light yield \rightarrow longer integration times
- neutral transition Ne* \rightarrow better resolution
- \rightarrow best for accurate absolute measurements

BGC UV: ultra-violet lines

- better light yield \rightarrow shorter integration times
- ionic transition Ne⁺ \rightarrow worse resolution
- \rightarrow best for precise relative measurements

Resolution

BGC UV

Beam size inferred from image size, correcting for resolution

$\sigma_{beam}^2 = \frac{\sigma_{img}^2}{M^2} - \sigma_{res}^2$

ionic transition Ne⁺ affected by beam field

semi-empirical correction including beam current

 $\begin{array}{l} M = \text{magnification} \\ \sigma_{beam} = \text{beam size} \\ \sigma_{img} = \text{fitted size} \\ \sigma_{res} = \text{resolution} \end{array}$

BGC VIS

- neutral transition Ne* unaffected by beam field
- resolution only given by optics

BGC self-calibration \rightarrow assume "true" value provided by BGC VIS and derive correction for BGC UV

Accuracy of BGC VIS

Resolution much smaller $(\sim 1/3)$ than beam size

 \rightarrow measurements look accurate and reproducible at flat-top

Low light yield with visible line

→ measurements quite noisy (±10% peak-to-peak in emittance)

BGC VIS results during machine cycle

Some issues affect the measurement

- overestimation of injection size due to poor signal
- fluorescence easily overwhelmed by losses
- long integration time implies very few points

BGC VIS reliable reference in stable beams but not ideal to track beam size evolution

Injection

Start of ramp

Stable beams

Combined BGC VIS + UV

Measure fill using BGC UV, switching to BGC VIS for accuracy cross-checks

Fluctuations of BGC UV within ±5% in emittance

Trend from combined **BGC VIS + UV compatible** with emittance scans at start and end of fill

Combined BGC VIS + UV during ramp

Overall positive results

- quantitative agreement with BSRT at injection
- "smooth" behavior in ramp
- qualitative agreement with BSRT at FT (e.g. dynamic beta effect on collision)
- quantitative agreement with emittance scan

BGC UV images during energy ramp (ROI follows beam size)

Vertical direction (perpendicular to jet)

Ideally, the vertical profile of the image has

- intensity plateau from uniform jet distribution
- Gaussian edges from beam distribution

 \rightarrow beam size information only encoded in the edges, retrievable from $\ensuremath{\text{deconvolution}}$

If jet thin enough, deconvolution can be replaced by simple Gaussian fit and correction in quadrature

In reality,

- deconvolution works with low-noise profiles \rightarrow only BGC UV usable
- real jet profile not perfectly rectangular → jet edges further correction to beam size
 ... these issues are mitigated if beam size is larger (low energy)

Vertical direction

Deconvolve BGC UV profiles to assess beam size

Larger fluctuations at flat-top than horizontal, ±15% emittance, due to extra correction for jet thickness

No accurate reference from BGC VIS. Deconvolution seems to match emittance scans but reproducibility to be assessed...

Vertical direction during ramp

Still some positive results:

- BGC, BSRT and BWS are compatible within 10% at injection
- "smooth" behavior in ramp, not so different from horizontal case
- within larger BGC fluctuations, good agreement with BSRT and emittance scan at FT

As size decreases, jet thickness effects appear

- simple Gaussian fit deviates from deconvolution
- measurements become noisier

Performance with ion beams

More favorable conditions with ion beams

- stronger fluorescence signal
- larger beam sizes

Limited availability of BSRT with ions:

- no light at injection
- rarely calibrated at flat-top

Promising results from last year ion run, re-commissioning with ions still pending

Summary of experimental results

Horizontal measurements (i.e. parallel to jet)

- BGC VIS configuration provides accurate and reproducible measurements in stationary beam conditions
- BGC VIS and BGC UV combined best option for beam size monitoring over full machine cycle

Vertical measurements

- BGC UV still OK at injection, flat-top performance affected by jet thickness
- improvable by reducing jet thickness and/or de-squeeze to increase flat-top beam size

Promising measurements from last year's ion run

re-commission BGC for ions and validate results

Beyond fluorescence

Fluorescence is not the only signal, gas-induced losses detectable downstream

Concept for a BGC-based beam profiler

Present BGC \rightarrow jet is "gas screen" and detect fluorescence photons

- 2D image very efficient to detect centroid
- info about beam profile (emittance)
- very low fluorescence cross-section, limited dynamic range

System can be converted into a beam profiler \rightarrow use jet as "gas collimator" and detect losses

- intrinsically a 1D instrument
- measures integrated population within jet
- if jet is moved, measures profile (emittance)

Optimizing jet-induced losses

Jet is only a part of the gas distribution created by BGC

 need to maximize sensitivity to jet versus background (jet shape/aspect ratio, reduce pressure background..)

Existing BLMs not optimized for BGC losses

- install additional BLM in BGC radiation hotspot
- install additional BLM close to BGC to enhance jet sensitivity
- test BGC-induced signal on new BWS scintillators

Conclusion and outlook

- BGC performance as average emittance monitor assessed with protons
 - successfully validated in the direction of the gas jet
 - perpendicular direction more challenging but margin for improvement
- re-commissioning with ions pending in 2024
 - encouraging results from 2023 ion run
 - could mitigate lack of emittance monitoring at injection energy
- investigations ongoing to exploit jet-induced losses as stronger signal for transverse beam diagnostics

Thank you for your attention!

D. Butti - Performance of the BGC in the LHC

D. Butti - Performance of the BGC in the LHC

Image processing

