# Reviewing high bandwidth BPM technologies

HL-LHC PROJECT

Genoa, October 2024

Thibaut Lefevre on behalf of WP13



### Task 13.5 - High Bandwidth BPM (BPW)

- Measuring intra-bunch motion with high bandwidth and high sampling rate (beam crabbing and instability monitoring)
  - With the goal to provide a better instrument than the classical Head-Tail monitor



### **Current Head-tail monitoring in LHC**

Stripline BPM, hybrid  $\Delta/\Sigma$ , long cables and fast sampling oscilloscope 





0



stream to downstream port of a 40 cm stripline BPM.



### **Current Head-tail monitoring in LHC**

• Stripline BPM, hybrid  $\Delta/\Sigma$ , long cables and fast sampling oscilloscope



PHYSICAL REVIEW ACCELERATORS AND BEAMS 22, 112803 (2019)
Automatic detection of transverse beam instabilities in the Large Hadron Collider
T. E. Levens<sup>®</sup>, <sup>\*</sup> K. Łasocha, <sup>†</sup> T. Lefevre, M. Gąsior, R. Jones, T. Włostowski, J. P. Ellis, <sup>‡</sup> and R. J. Steinhagen<sup>§</sup> *CERN, CH-1211 Geneva 23, Switzerland* 

Improved DAQ using better performing oscilloscope





### **Current Head-tail monitoring in LHC**

Stripline BPM, hybrid  $\Delta/\Sigma$ , long cables and fast sampling oscilloscope



### HL acceptance criteria for High bandwidth PU's

- Approved in 2021 <u>https://edms.cern.ch/document/2369610/1.2</u>
  - High dynamic range
  - Two levels of performance criteria

#### Key performance criteria

| Criterion                                                                        |        | Units |
|----------------------------------------------------------------------------------|--------|-------|
| Single bunch, single pass resolution at bunch centre for pilot bunch intensity   | 100    | um    |
| Single bunch, single pass resolution at bunch centre for nominal bunch intensity | 10     | um    |
| Precision <sup>1</sup> of the measurement for nominal bunch intensity            | 10     | um    |
| Long term stability <sup>2</sup> of the offset for nominal bunch intensity       | 50     | um    |
| High frequency cut-off (-3dB)                                                    | 5      | GHz   |
| Low frequency cut-off (-3dB)                                                     | ≤ 1    | MHz   |
| In-band (between -1dB low and high cut-off roll-off) response variation          | ≤1     | dB    |
| Time resolution for single bunch, single pass measurement                        | 50     | ps    |
| Acquisition length for a single bunch measurement on successive turns            | > 1000 | turn  |
| Minimum time between two successive measurements                                 | 25     | ns    |

| Parameter Description   | Value                | Unit    |
|-------------------------|----------------------|---------|
| Pilot Bunch Intensity   | 5×10 <sup>9</sup>    | Charges |
| Nominal Bunch Intensity | 2.2×10 <sup>11</sup> | Charges |

| Criterion                                                                         | Value | Units |
|-----------------------------------------------------------------------------------|-------|-------|
| ingle bunch, single pass resolution at bunch centre for pilot bunch intensity     | 50    | um    |
| ingle bunch, single pass resolution at bunch centre for nominal bunch<br>ntensity | 5     | um    |
| Precision <sup>1</sup> of the measurement for nominal bunch intensity             | 5     | um    |
| ong term stability <sup>2</sup> of the offset for nominal bunch intensity         | 20    | um    |
| ligh frequency cut-off (-3dB)                                                     | 10    | GHz   |
| ow frequency cut-off (-3dB)                                                       | ≤ 500 | kHz   |
| n-band (between -1dB low and high cut-off roll-off) response variation            | ≤1    | dB    |
| ime resolution for single bunch, single pass measurement                          | 25    | ps    |
| Acquisition length for a single bunch measurement on successive turns             | 10000 | turn  |
| Ainimum time between two successive measurements                                  | 25    | ns    |

Target performance criteria



### Acceptance criteria for High bandwidth PU's

Approved in 2021 <u>https://edms.cern.ch/document/2369610/1.2</u>

| 1 12 1 1                                  | •                                   |                                 |                      |                       |       |       |
|-------------------------------------------|-------------------------------------|---------------------------------|----------------------|-----------------------|-------|-------|
| High dyi                                  | namic range                         | Parameter Description           | Value                | Unit                  |       |       |
|                                           |                                     | Pilot Bunch Intensity           | 5×10 <sup>9</sup>    | Charges               |       |       |
|                                           |                                     | Nominal Bunch Intensity         | 2.2×10 <sup>11</sup> | Charges               |       |       |
| Two lo                                    | Analogue Bandwidth 10GHz            | 2                               |                      |                       |       |       |
| Key r                                     |                                     |                                 |                      | <u>ce criteria</u>    |       |       |
| •                                         | Time resolution 25ps                |                                 |                      |                       | Value | Units |
| e bunch, single pass resoluti             |                                     |                                 |                      | pilot bunch intensity | 50    | um    |
| e bunch, single pass resoluti             | Position sensitivity 10um           |                                 |                      | nominal bunch         | 5     | um    |
| sion <sup>1</sup> of the measurement f    | n <sup>1</sup> of the measurement f |                                 |                      | sity                  | 5     | um    |
| term stability <sup>2</sup> of the offset |                                     |                                 |                      | nsity                 | 20    | um    |
| frequency cut-off (-3dB)                  | Measuring all bunches (40N          | ЛHz)                            |                      |                       | 10    | GHz   |
| requency cut-off (-3dB)                   | 5                                   | ,                               |                      |                       | ≤ 500 | kHz   |
| nd (between -1dB low and l                |                                     |                                 |                      | oonse variation       | ≤1    | dB    |
| resolution for single bunch,              | Towards larger number of t          | urns acquired                   |                      | ent                   | 25    | ps    |
| sition length for a single bunch          |                                     |                                 | un s                 | successive turns      | 10000 | turn  |
| num time between two successive           | e measurements 25 ns                | Minimum time between two succes | ssive measurements   |                       | 25    | ns    |



Single Single inten Precis Long High Low f In-ba Time Acqu Minin

### High Bandwidth BPM development plans

- Developing full E-O Pick-Ups (started in 2016)
  - Encoding the time varying beam signals onto a laser using birefrigent crystal (Lithium Niobate)
  - Replacing cables by optical fibers
  - Relying on fast detectors and fast oscilloscope









### High Bandwidth BPM development plans

### Developing Electro-optical Time stretch techniques

- Keeping EM BPM (i.e. stripline), possibly better performing one (higher bandwidth)
- Using electro-optical modulator to encode electrical beam signals on laser beam optical fiber transmission
- Using chirped laser pulses to use time stretch techniques to improve the DAQ system (better and cheaper)



### High Bandwidth BPM development plans

**Developing Electro-optical Time stretch techniques** 

• Proof of concept test performed at CLEAR in 2024 using Time stretch at 780nm wavelength



 Validation test to be performed in 2025 on LHC stripline pick-up using Time Stretch at 1550nm (to assess the performance of longer stretching)



### **Reviewing the High bandwidth PU technology**

#### Hilumi LHC high bandwidth BPM review – December 2024

The main goal of the review is to assess the **performances and limitations of the different technologies** that can be considered for high bandwidth intra-bunch position monitoring in the LHC, especially for time domain crab cavity diagnostics. The panel will review the **monitor's architecture and implementation**, including both the pick-up's design as well as its control and read-out system. The panel will be asked to assess the **performance of the proposed solutions with respect to the monitor acceptance criteria** (<u>https://edms.cern.ch/document/2369610/1.2</u>). They shall also highlight the **main risks for a successful deployment of the system in the LHC during the Long Shutdown 3 (LS3)**, including both budget and schedule considerations.



## **Reviewing the High bandwidth PU technology**

### Hilumi LHC high bandwidth BPM review – December 2024

#### Charge Questions:

- 1- Does the proposed monitor's architecture satisfy the functional specifications ?
- 2- Is the strategy proposed to solve the technical issues or unknowns well defined and in line with an implementation during LS3?
- 3- Are the pros and cons of the different technical solutions all well addressed ?
- 4- Are there changes to be considered to the functional specifications that would increase the chance of success ?

#### Proposed talks :

- Overview of Head-tail monitoring in LHC
- Overview of the HL high bandwidth functional specifications and constrains for installation
- EO PU development status and plans
- EM Stripline development status and plans
- Time stretch EO modulators acquisition system development and plans
- WP13.6 BPW High frequency BPM project budget and schedule



### **Summary**

- WP13 worked on an exciting R&D program towards the development of improved high bandwidth BPM
- As we are entering the final phase of the project, a technology choice must be made
- Review in December 2024 will allow to identify the best system design and prepare for its implementation during LS3.



13