

Beam halo monitor – coronagraph study

Jan Pucek, D. Butti, G. Trad, E. Bravin, S. Burger, F. Roncarolo

HL-LHC collaboration week in Genoa, October 2024

Outline

Coronagraph – principle

BSRH status

- Current layout
- Demonstration of modes
- Important parameters
- First MD (May)
 - Results

Second MD (September)

- Preliminary results
- Conclusions + Outlook

Coronagraph – principle

Coronagraph – principle

2. Telescope with occulter

- 1. Telescope provides an image of an object
- In case of measuring low intensity tails, the occulter is not sufficient – diffraction created at the aperture will disturb the image
- 3. Coronagraph is an "enhanced" telescope that uses "field" lens to image the aperture on the Lyot's stop – blocking the diffraction of the aperture

BSRH status

Current layout – Beam 2

Possible configurations:

- 1. Regular telescope imaging the SR
- 2. Telescope with occulter masking the core enables longer exposure time/gain
- 3. Coronagraph diffraction from the beam mirror can be mitigated

Demonstration of modes

Low *e*

High *ɛ*

Possible configurations:

- 1. Regular telescope imaging the SR
- 2. Telescope with occulter masking the core enables longer exposure time/gain
- 3. Coronagraph diffraction from the beam mirror can be mitigated

7

"Gating"

Important parameters (prepare, carry out, analyze MD)

- Wire scanners BWS:
 - ß_y = 418.23m
 - $\beta_x = 185.15m$
- Coronagraph BSRH:
 - ß_y = 366.63m
 - $\beta_x = 193.8 \text{m}$

- For $\epsilon_N = 2.5$ um rad
- $\sigma_v = 386 \text{ um}$
- $\sigma_x = 257 \text{ um}$

- $\sigma_y = 362 \text{ um}$ • $\sigma_x = 263 \text{ um}$
- Primary collimators TCP (V):
 - $\beta_v = 71.49m$
 - $\beta_x = 148.43$ m

• $\sigma_y = 160 \text{ um}$ • $\sigma_x = 230 \text{ um}$

First MD (May)

Analysis and Results

MD overview

Procedure:

- Injection: Nominal, 5x Pilot, Nominal, 5x Pilot at ε = 2.5 um (nominal HL-LHC)
- Scrape the beam to 3σ , blow up pilots to artificially create Halo
- Measure the distributions with BWS and BSRH (while testing different instrument settings)
- Changing the beam and the instrument + few machine related problems, gave us direction for 2nd MD
- \rightarrow Saved over 12 000 datapoints, only ~2000 in steady condition (1 blow-up scan in V plane)

BSRH – data video

Important to notice: Unstable position of the distribution \rightarrow changing the integration limits of the HALO Our suspition is that it was caused due to coherent beam centroid oscillations induced by the ADT

Analysis procedure

BWS

- 1. Fit data with a Gaussian distribution (obtain the center of the distribution)
- 2. Calculate the integration limits
- 3. Normalize the data by the FBCT measurement
- 4. Integrate the data to obtain the charge in the halo region

BSRH

- 1. Create projections from the 2D image
- 2. Fit the projections outside the mask with a Gaussian distribution (obtain the center of the distribution)
- 3. Calculate the integration limits
- 4. Normalize the data with the charge-to-count scaling factor (w_q)
- 5. Integrate the data to obtain the charge in the halo region

Illustration of the analysis procedure

Results – summary plot

Another MD was dedicated to verify the performance with respect to the functional specifications

Results

- BWS raw data to charge scaling done at beginning (with FBCT),kept constant
 - + no bg substraction
- BSRH charge scaling done once at beginning without occulter, then kept constant
 - + bg substraction = last point of scraping used as 0
- 3. The two instruments agree in absolute and relative measurement (total charge outside $3.5\sigma_r$), one division on the graph = 2e8 p⁺

Second MD

Overview Preliminary results

MD overview

Procedure:

- Injection: 20x Pilots (ε = 2.5 um rad), 4x Pilot (high ε), 4x Pilot (low ε)
 Measure the PSF and magnification of the BSRH, increase the PMT gain of the BWS
- Scrape the beam (to obtain the background light yield), blowup individual pilots to provide limits of the charge resolution in the region from 4.7 to 6.7 σ
- Acquired 17 000 measurements, with at least 2 scans per plane, ~12 000 measurements to be analysed!

Analysis:

The same analysis performed as with the previously acquired data

BSRH - video

More stable? High octupole settings and different chromaticity

Preliminary results

- Setup (alignment, occulter change etc.) of the BSRH was fast+easy, used experience from 1st MD
- Measured magnification and PSF (under the assumption of profiles being Gaussian) — Low emittance ones are not Gaussian (from BWS)

• In H: magnification = 0.589 (pixel size= 19.9 um/px), σ_{PSF} = 438 um

• In V: magnification = 0.514 (pixel size = 22.8 um/px), σ_{PSF} = 453 um

From target measured ~350 um

Measured charge scaling

- This seems to be problematic changes with the gate length, for $n_b > 5$: $w_q = 44.5 \text{ p}^+/\text{count}$
- Currently under discussion with the manufacturer of the image intensifier

Preliminary results

Single pilot blowup in V

LHC PROJEC

Single pilot blowup in H

BSRH results must be compared to BWS and FBCT \rightarrow in progress

Two MDs in short

- After a challenging first MD data analysis, we identified that:
- Correcting for beam position oscillations to consistently determine beam halo boundaries
- Calibrating BSRH raw images vs FBCT

are two essential ingredients to prove agreement between BWS and BSRH

- During second MD a real-time analysis of each scan gave inputs for the following ones
- Complete analysis ongoing

Conclusions

- Same trend measured with BWS and BSRH agreement within ≈1e9
 - Issue: Assess BG without scrapping
- The image intensifier is the limitting piece of equipment (by design, additional gating problems in case the system is made operational)
- Coronagraph is complex could the measurement be performed using occulted BSRT?
- Next steps:
 - Analyse all the data from the second MD
 - Study the gains in case of second SR extraction line
 - Provide a solution to the intensity problem
 - Review of Beam Halo Monitor (provide decision on used technology)

Thank you for your attention

Backup

BSRH intensity problem

 $\pm 10\%$ intensity oscillation due to finite capacitance of the intensifier – only possibility is to calculate the moving average (or provide different engineering solution)

