

LHC Beam Halo Working Group Report

F. Roncarolo

Many thanks (for input and material) to: E. Bravin, S. Burger, D. Butti, R. De Maria, C. Hernalsteens, P. Hermes, T. Lefefre, S. Mazzoni, D. Mirarchi, C. Pasquino, J. Pucek, M. Rakic, S. Redaelli, G. Sterbini, J. Storey, G. Trad, R. Veness et al.

HL-LHC Collaboration Meeting, Genova, 09-Oct-2024

Contents

- Introduction to Beam Halo Working Group (BHWG) and short recap of Beam Halo Monitor (BHM) development history
- Revised functional specifications
- Review of monitor technologies suitable as BHM
- Conclusions / Outlook

Beam Halo @ HL-LHC

Controlling/minimizing the beam halo is crucial for:

- Beam quality and machine stability, preventing excessive losses and instabilities.
- Machine protection, safeguarding delicate components from damage.
- Maximizing luminosity
- Reducing detector background, enabling more accurate analysis of collision data

Beam Halo Monitoring included as BI deliverable @ HL-LHC

Beam Halo Monitoring history recap

- Scraping + BLM & BCT \rightarrow ~'operational' beam halo measurements
 - Destructive, only possible in dedicated machine periods (e.g. Commissioning, MDs, End of Fill)
- Baseline proposal for non destructive measurements: detector based on SR imaging. High dynamic range sensors soon discarded in favor of coronagraph (core blocking) system, in collaboration with KEK)
- **Up to 2023**: Extensive R&D, lab setups, simulations, prototype installed on LHC B2
- Prove of principle soon achieved (<u>IPAC</u>). Ultimate performance more difficult to assess. Details in previous collaboration meetings
- 2024: setup new Beam Halo Working Group to wrap up on specifications and technologies

The Beam Halo Working Group

Mandate

Invitation List

- Review beam halo measurements' specifications
- Evaluate coronagraph system performance
- Explore alternative/complementary techniques
- Inform decision on second synchrotron radiation source

Group	Required (and alternates)	Optional
SV BI	F.Roncarolo (Chair), J.Pucek (Scientific Secretary), D. Butti,	T. Lefevre, R.Veness
51-DI	S. Mazzoni, B. Salvachua, S. Morales Vigo, J. Storey	C.Pasquino
BE-ABP	S. Redaelli, M. Rakic, P. Hermes, R. de Maria, G. Sterbini	
BE-OP	G. Trad, D. Mirarchi	
SY-RF	H. Timko	R. Calaga
MPP	C. Hernalsteens	D. Wollmann

Beam Halo Working Group – Agendas

WG - LHC Beam Halo Monitoring · Indico (cern.ch)

Date	Subject
01 Mar 2024	KickOff meeting - LHC beam halo monitoring
22 Mar 2024	2nd BHWG - Coronagraph MD prep - Collimation specs
26 Apr 2024	3rd BHWG - MPP use cases - BGI as BHM
24 May 2024	4th BHWG - Beam-Beam specs - Wire materials simulations
05 Jul 2024	5th BHWG - 1st specs review - BGC as BHM - BSRH MD preliminary results
30 Aug 2024	6th BHWG - Func Specs final draft - Updated BSRH MD results

FUNCTIONAL SPECIFICATIONS

Functional Specs –revisited

During meetings: revisited definitions and use cases Final draft document already circulated and

commented by contributors (SY-BI, BE-ABP, TE-MPE, et al.)

Three ways to qualify / quantify halo:

- **1. Relative integral**, as the ratio between the beam profile (image) integral from $xx \sigma$ to ∞ and the beam profile (image) integral from 0 to ∞
- **2. Contrast**, defined as the ratio between the beam profile (image) intensity at xx σ and the beam profile (image) maximum
- 3. **Q-value** of the q-Gaussian model of the charge distribution

General reminders / hypotheses

- Relative integral comparable to scraping meas only in case of beam radial symmetry satisfied
- monitors with PSF, pixel size, required calibration factors etc... → raw profile(image) != beam profile(image)

Definitions, Simulations, Measurement

HL-LHC - Genoa - 2024 - WP13 - BHWG Summary - F. Roncarolo

Use cases - requirements

- Collimation
- Machine Protection
- Measurements of beambeam effects
- 'Others'

Minimum requirements: the lower performance range in terms of sensitivity, resolution and/or accuracy for the monitor to be considered useful

Ultimate requirements or desiderata:

more demanding performance levels that would enhance halo monitoring effectiveness in optimising the LHC's overall protection and/or physics reach

Warning or Interlocking functionalities implying high availability and reliability to avoid spurious beam dumps.

Parameter	Remarks	Unit	Collimation	МР	Beam-Beam
ROI	e.g. 3.5 to $+\infty$	$\underset{\epsilon_n = 2.5 \mu \text{m}}{\text{Sigmas}}$	4.7 to 6.7, 6.5 to 8.5	4.7 to 6.7, 6.5 to 8.5	3.5 to 8.5
Contrast Required	Resolve halo at xx sigma / core- peak=1e-4	-	10^{-4} at upper bound	10^{-6} at 6.7σ	5×10^{-5} at 7σ
Relative Integral	(Halo/total) mea- surement range for ROI	# of p	5% to $0.5%$	1.4% to $0.2%$	
Absolute Integral	# of p in ROI	# of p	1.5×10^{12}	$(1-4) \times 10^{10}$	
Charge Required	Yes / No	-	Yes	Yes	No
Profile Required	Yes / No	-	No	No	Yes (comple- mentary to BWS)
Profile Desirable	Yes / No	-	Yes	Maybe	-
2D Image Required	Yes / No	-	No	No	Yes
2D Image Desirable	Yes / No	-	Yes	No	-
Acq. Rate	for full machine	Seconds	≈ 60	≈ 10	≈ 60
Gating and Integration	Bunch per Bunch / Trains / other	-	Beam	Train of 48b	bunch per bunch
Integration over Multi Turns Acceptable	Yes/No	Yes	Yes	Yes	Yes
Interlocking Desired	Yes / No (=mon- itoring only)	-	No	Yes	No

Functional Specs

Synthetic Summary Table

- Ranges and Requirements: Assessing minimum reach and desired capabilities
- Key Highlights:
 - Beam-beam Interactions: Need for profiles, images, and bunch-bybunch analysis
 - Machine Protection (MP): 10second integration time, capability to gate on 48 bunches
 - Collimation System: Integral measurements sufficient, profiles preferred, ability to resolve halo up to 8.5 sigma

11

Table 3.1 – Summary of minimal specifications

Detector Technologies

SR imaging

Coronograph extensively discussed in <u>next talk by J.Pucek</u>.

- Ultimate reach (expected to be limited by SR source diffraction) being assessed via MDs with prototype on one LHC beam
- Alternatives- using SR:
 - More standard 'occulting' imaging telescope. No need for Lyot stops and related re-imaging present in coronagraph
 - HDR camera: can re-iterate on ultimate performances reach (update survey made many years ago)
 - Slit Scanner (not presented at BHWG yet):
 - Sample and count SR slices with a fast moving slit. Fast gated intensified PMT allows probing all LHC bunches faster than imaging.
 - Beam halo spatial resolution and accuracy also affected by SR diffraction and optical line quality. No 2D image. Being tested at SPS and LHC.

Second SR extraction systems

- More compact extraction system
- More light collected (Roman Pot-like object, move closer to beam at flat top)

14

Second SR source systems

The **HL-LHC baseline** includes **new light extraction systems (BSRTMB):** for Beam Halo Monitor (BHM) and streak camera implementation. Progress has been made:

- Completed comprehensive design, integration, and RF impedance studies through simulations and laboratory measurements
- Produced and installed Beam 1 system with a remotely movable (dummy) mirror
 - Fully tested in LHC environment, with integration into operational sequences and interlocks as collimator-like equipment
 - Validated RF simulations using temperature probes, confirming no heating issues during LHC operation
- Requested necessary cables and fibers for both beams

Next:

- Go ahead with integration studies and installation plans, including option for optics in UA – PRO and CONS being assessed
- BHM review end of 2024 to clarify next steps/decisions

Beam Gas Ionization Monitor (BGI)- Concept

See J.Storey's presentation later today

BGI as BHM

- BGI is a new non-destructive transverse beam profile monitor under development for HL-LHC (see <u>J.Storey in few minutes</u>)
- Timepix4 HPD with a spatial resolution $\sigma_{spatial}$ =16µm & time resolution σ_{time} =200ps.

Parameter	Without Gas Injection	With Neon Gas Injection		
Residual gas pressure	1x10-10 mbar	1x10-10 mbar		
Injected gas pressure	N/A	1x10-8 mbar (Neon)	Item	Comment/Mitigation
Integration time	1s	1s	Signal strength	Sufficient with Neon gas injection
HL-LHC beam	2.2x1011 ppb x 2760 bunches	2.2x1011 ppb x 2760 bunches	Timepix4 saturation	Mask pixels under beam core
Total electron signal	15x10^6 electrons/s	8x10^9 electrons/s	Charged particle backgrounds	Use cluster finding & selection methods
Beam halo signal (>±5σ)	4 electrons/s	2200 electrons/s	Electron position preservation	Requires simulation studies
Conclusion	Insufficient beam halo signal	"Useful" beam halo signal	Budget	Neon gas injection system not currently included

17

Beam Gas Curtain (BGC) as beam profiler

- Continuous, ~non-invasive measurements
- Measures population integrated along jet
- If jet is moved, measures profile (emittance)

Possible limitation	Impact
Gas jet is not a step function	Reduced spatial resolution
High pressure background (Pmin)	Reduced sensitivity to halo population
Limited Pmax	++ integration time to have usable signals
Pressure fluctuations	Affect absolute measurements. Relative measurements still possible with constant pressure

HL-LHC - Genoa - 2024 - WP13 - BHWG Summary - F. Roncarolo

Low Density Materials

SY-BI **studying** new nano-tube based materials for **fast wire scanners** (for **beam profile**, not focusing on beam halo)

- Aim: use same models to simulate beam halo 'probi
- Challenges:
 - Current materials limited by high-Z impurities
 - Simulate/validate wire heating, losses, risks of quenches

Collaborations

- Bath University: Post-processing purification methods
- Global suppliers: Materials with suitable properties
 Material requirements
- Specific densities and diameters
- Appropriate mechanical properties

Conclusions / Outlook

Beam Halo Working Group Progress

- Functional specifications document nearing completion
 - Assesses minimum requirements and desirable features
 - Relaxed specifications compared to previous 10^-5 contrast requirement
- Ongoing SR monitor tests and technology evaluations (<u>J.Pucek in few min</u>)
- BGI and BGC considered as potential BHM = extensions of beam profile monitors
- Challenge: no single monitor currently meets all specifications
- Next steps (in BHWG meetings as needed):
- Slit scanner status and perspectives
- Evaluate second light source status and trade-offs
- Evaluate options with HL-LHC optics in IR4 (e.g. de-squeeze IR4 at flat top as extension of flat optics). Larger beam sizes beneficial for most(all?) monitors
- Review use cases in light of <u>'Update on collimation losses and halo limitations</u>' and <u>Integrated luminosity of the new HL-LHC baseline</u> et al. Genoa presentations ?

Beam Halo monitoring review scheduled for December 2024

SPARES

HL-LHC - Genoa - 2024 - WP13 - BHWG Summary - F. Roncarolo

Current transverse halo population

Conclusion on halo population:

- Halo overpopulated compared to Gaussian
 - In a range of a few percent
- Variance in halo population between measurements, beams and planes need for versatility

HILUMI

HL-LHC - Genoa - 2024 - WP13 - BHWG Summary - F. Roncarolo

Fast failures

Depleted halos will delay the critical loss level but also the indirect failure detection time (from BLM or BCCM)

> reduced margin for indirect detection

> > A

Classification	Failure	Detection	Elements
Beam effect of magnet	QH	Direct	Triplets, D1, D2 (+ MB)
protection equipment	CLIQ	Direct	Triplets IP1 & 5
Active device failure	ADT	Indirect	ADT H & V
	Crab cavities	Direct	IP1 & 5
Powering failure (resistive component)	BBCW	Direct	IP1 & 5
Powering failure (SC component)	Symmetric triplet quench	Direct / Indirect	Triplets IP1 & 5
Other	UFO	Indirect	Arcs
Other	Loss BB kick	N.A.	N.A.

Direct detection: external fault detection mechanism is interlocked Indirect detection: protection must rely on interlocked beam-based measurements

• Rooting path using existing cores

Fast Losses

Spurious CLIQ discharge failure case

