

Dynamic Aperture of the new HL-LHC baseline

C. Droin, S. Kostoglou, G. Sterbini on behalf of WP2 team

We thank Y. Angelis, H. Bartosik, R. De Maria, I. Efthymiopoulos, M. Giovannozzi, G. ladarola, L. Mether, E. Métral, N. Mounet, Y. Papaphilippou, R. Tomás.

- 1. Introduction
- 2. Beam-Beam Studies Results
- 3. Conclusions

Introduction

Beam-beam Studies Results

End of Collapse Start of *L*-Levelling End of *L*-Levelling

Conclusions

DA as main observable

• HL-LHC performance strongly depends on the orchestration of several beam and machine parameters during the cycle.

DA as main observable

- HL-LHC performance strongly depends on the orchestration of several beam and machine parameters during the cycle.
- For the beam-beam and incoherent effects, the selection/validation of the operational scenario is based on numerical simulations supported by the experience of the past runs: previous studies demonstrated the correlation between beam lifetime in operation and DA from simulations [1].

• Based on this experience, an operational scenario is characterized as feasible when there are working points that satisfy the following criteria in the simulations:

- Based on this experience, an operational scenario is characterized as feasible when there are working points that satisfy the following criteria in the simulations:
 - 1. A minimum **DA of at least 6** σ .

- Based on this experience, an operational scenario is characterized as feasible when there are working points that satisfy the following criteria in the simulations:
 - 1. A minimum **DA of at least 6** σ .
 - ^{2.} Working point condition $\mathbf{q}_x + \mathbf{5} \times \mathbf{10^{-3}} < \mathbf{q}_y$: no experience operating below the diagonal and tune split of $+5 \times 10^{-3}$ to prevent possible instabilities.

- Based on this experience, an operational scenario is characterized as feasible when there are working points that satisfy the following criteria in the simulations:
 - 1. A minimum **DA of at least 6** σ .
 - ^{2.} Working point condition $\mathbf{q}_x + \mathbf{5} \times \mathbf{10^{-3}} < \mathbf{q}_y$: no experience operating below the diagonal and tune split of $+5 \times 10^{-3}$ to prevent possible instabilities.
- Goal is to converge to the best combination of optics, chromaticity, octupole current, crossing angle for stability, DA and overall performance during various stages of HL-LHC cycle.

- Based on this experience, an operational scenario is characterized as feasible when there are working points that satisfy the following criteria in the simulations:
 - 1. A minimum **DA of at least 6** σ .
 - ^{2.} Working point condition $\mathbf{q}_x + \mathbf{5} \times \mathbf{10}^{-3} < \mathbf{q}_y$: no experience operating below the diagonal and tune split of $+5 \times 10^{-3}$ to prevent possible instabilities.
- Goal is to converge to the best combination of optics, chromaticity, octupole current, crossing angle for stability, DA and overall performance during various stages of HL-LHC cycle.
- Considering both round and flat optics $(\frac{\beta_x^*}{\beta_{//}^*} = 2)$, positive and negative octupole polarity, option to reduce chromaticity (similar to 2024 Run) and crossing angle at the end of leveling.

Schematic of the Run 4 Cycle

Focusing on phases of cycle where beam-beam effects are dominating (courtesy of R. De Maria).

Filling scheme

The e-cloud problem being *a priori* resolved, only the baseline filling scheme is considered (25 ns standard beams, 4x72 bunches per injection):

 baseline (2760 bunches): 25ns_2760b_2748_2492_2574_288bpi_13inj_800ns_bs200ns

Filling scheme

The e-cloud problem being *a priori* resolved, only the baseline filling scheme is considered (25 ns standard beams, 4x72 bunches per injection):

- baseline (2760 bunches): 25ns_2760b_2748_2492_2574_288bpi_13inj_800ns_bs200ns
- Simulating worst bunch in terms of head-on and long-range interactions in all IPs, not necessarily worst bunch in terms of DA. Similarly to bunch-by-bunch lifetime fluctuations, there are bunch-by-bunch DA variations not illustrated in the DA scans.

Introduction

Beam-beam Studies Results

End of Collapse Start of \mathcal{L} -Levelling End of \mathcal{L} -Levelling

Conclusions

End of Collapse

End of Collapse

Parameters (unit)	HL-LHC (values)	
Beam energy (TeV)	7	
Luminosity $(10^{34} \text{ Hz/cm}^2)$	≈ 2.5	
Bunch population (protons)	2.2×10^{11}	
Filling scheme	baseline	
Normalised emittance $(\mu m rad)$	2.3	
Nominal working point (Q_x, Q_y)	(62.31, 60.32)	
Chromaticity $Q'_{x,y}$	15	
IP1/5 half crossing angle (μrad)	250(H) / 250(V)	
IP2/8 half crossing angle (μ rad)	-170(V) / 170(V)	
IP1/5 β^* (m)	1.1 (round) or 0.9/1.8	
$IP2/8 \beta^*$ (m)	10/1.5	
Half crab-cavity angle (μrad)	0	

Round optics: sensitivity to octupole polarity

Baseline configuration marginally OK with $I_{OCT} = 300$ A. Negative octupoles option yields better results.

Flat optics: sensitivity to octupole polarity

Negative octupoles option yields better results also with flat optics.

I=150 A

I_{MO} scan along the upper diagonal

Round optics

Flat optics

Flat optics could alleviate the impedance of the CC and increase integrated luminosity (current projections at +3%).

Introduction

Beam-beam Studies Results End of Collapse Start of \mathcal{L} -Levelling End of \mathcal{L} -Levelling

Conclusions

Start of *L*-Levelling

(IRN)

Start of the \mathcal{L} -levelling

Parameters (unit)	HL-LHC (values)		
Beam energy (TeV)	7		
Luminosity $(10^{34} \text{ Hz/cm}^2)$	5		
Bunch population (protons)	2.2×10^{11}		
Filling scheme	baseline		
Normalized emittance $(\mu m rad)$	2.3		
Nominal working point (Q_x, Q_y)	(62.31, 60.32)		
Chromaticity $Q'_{x,y}$	15		
IP1/5 half crossing angle (μrad)	250(H) / 250(V)		
IP2/8 half crossing angle (μrad)	-170(V) / 170(V)		
IP1/5 β^* (m)	0.58 (round)		
$IP2/8 \beta^*$ (m)	10/1.5		
Landau octupoles' current (A)	-60A		
Half crab-cavity angle (μrad)	- 97 ¹		

 $^{^1{\}rm This}$ small value allows not to exceed target lumi as the current SoL optics not adapted for the baseline filling scheme.

Tune scan

Reaching the DA target with Q'=15 and -60 A Based on Run3 experience, important to reach 6σ target at end of adjust and start of leveling

14th HL-LHC Collaboration Meeting Dynamic Aperture of the new HL-LHC baseline 17

Introduction

Beam-beam Studies Results

End of Collapse Start of \mathcal{L} -Levelling End of \mathcal{L} -Levelling

Conclusions

End of \mathcal{L} -Levelling

End of the \mathcal{L} -levelling

Parameters (unit)	HL-LHC (values)		
Beam energy (TeV)	7		
Luminosity ($10^{34}~{ m Hz/cm^2}$)	5		
Bunch population (protons)	$1 - 1.2 \times 10^{11}$		
Filling scheme	baseline		
Normalized emittance $(\mu { m m} ~{ m rad})$	2.5		
Nominal working point (Q_x, Q_y)	(62.31, 60.32)		
Chromaticity $Q'_{x,y}$	5 or 15		
IP1/5 half crossing angle (μrad)	250(H) / 250(V)		
IP2/8 half crossing angle (μ rad)	170(V) / 170(V)		
$IP1/5 \beta^*$ (m)	7.5/18 (flat) or 15 (round)		
$IP2/8 \beta^{*}$ (m)	10/1.5		
Landau octupoles' current (A)	± 60		
Half crab-cavity angle (μrad)	-190		

Round optics: tune trims from SOL to EOL

EOL

Optimal working point shifted downward along the diagonal from SOL to $$\rm EOL$$

Round optics: sensitivity to emittance

Similar results with round optics and positive/negative octupoles The DA target is barely met with Q'=15. In case of emittance blow-up, the DA target is not met with Q'=15.

Round optics: varying Q' & $\phi_{IP1/5}$

Reducing Q'=5 is beneficial for DA, crossing angle can be reduced to 220 μ rad.

Flat optics: sensitivity to chromaticity

The DA target is met with Q'=5. The DA target is barely met with Q'=15.

Flat optics: sensitivity to octupole

Improved DA with negative octupole polarity and flat optics

Flat optics: sensitivity to $\phi_{IP1/5}$

With Q'=5 and -60 A, crossing angle can be reduced to 210 μ rad for flat optics at EOL

MD towards HL-LHC beam-beam conditions

- Tested 1 train of 36b per beam with 1.8e11 ppb in beam-beam wire compensation MD.
- β* was quickly reduced to 30 cm and crossing angle from 160 (12 σ) to 130 μrad (8 σ) to simulate aggressive beam-beam scenario (HL-LHC flat optics 11 σ at EOL).
- 40 h beam lifetime at end of collapse.

Introduction

Beam-beam Studies Results

End of Collapse Start of \mathcal{L} -Levelling End of \mathcal{L} -Levelling

Conclusions

Conclusions

IP1/5 luminosity	Chromaticity	Optics	Octupoles (A)	Crossing angle (µrad)	DA
$(10^{34} \text{ Hz/cm}^2)$					
End of collapse	15	Round	+300/-300	250	marginally ok/ok
	15	Flat	+150/-150	250	marginally ok/ok
Start of leveling	15	Round	-60	250	ok
End of leveling	15	Round	+60/-60	250	marginally ok (not ok if $> 2.5 \ \mu$ m)/ok
	5	Round	+60/-60	250/220	ok/ok
End of leveling	15	Flat	+60/-60	250	marginally ok (not ok if $> 2.5 \ \mu$ m)/ok
	5	Flat	+60/-60	250/210	ok/ok

- Negative octupole polarity beneficial for all stages of collisions for both round and flat optics. However, operational experience with negative polarity is limited at the moment.
- Flat optics have several advantages and are a viable option based on DA, though limited operational experience at the moment.
- Currently gaining experience with lower chromaticity at EOL in Run3.
- Combining lower chromaticity and negative octupole polarity could allow a crossing angle reduction at EOL that can result in increased integrated luminosity.

Thank you for your attention.

home.cern

Round optics (octupole scan, Q'=15)

Target can be reached for both positive and negative octupoles

Round optics, bunch scan at Q'=15

Almost all bunches are above target

References (I)

 D. Pellegrini, G. Arduini, S. Fartoukh, G. Iadarola, N. Karastathis, Y. Papaphilippou, and G. Sterbini.
 Incoherent beam-beam effects and lifetime optimization.
 In Proceedings, 7th Evian Workshop on LHC beam operation: Evian Les Bains, France, December 13-15, 2016, Geneva, 2017. CERN.

