

Halo Studies Including Hierarchy Breakage

C.E. Montanari, R. Appleby, M. Giovannozzi, P. Hermes, M. Rakic, S. Redaelli, F. Van der Veken HL-LHC Collaboration Meeting - Genoa - 9 October 2024

Outline

- Introduction: LHC collimation and hierarchy
- Beam Halo: definition, overview and measurements
 - Collimator scraping overview
 - Update on recent observations

Ongoing modelling efforts

- Global diffusive models
- Chaos indicators for single-particle tracking

Notes on Hierarchy Breaking

- Overview of the problem
- Recent simulation efforts ongoing

The LHC collimator system

Multi-stage system

- Betatron cleaning in IR7
- Momentum cleaning in IR3
- Nearby protection of triplets and experiments
- Critical for machine protection and background mitigation

Multiple challenges for HL-LHC intensities

- Doubling of the bunch population
- Total stored energy of 678MJ per beam
- Higher impedance expected

he University of Manchester

• No hollow electron lenses to mitigate the halo

Overview of the LHC collimation system

A hierarchy to respect!

- Different collimation types for different purposes
 - Primary collimators (TCP) closest to main beam
 - Secondary and Tertiary collimators remove particle showers, protect IPs, reduce background
- Hierarchy designed around optics, aligned to beam centers, validated with dedicated runs

he University of Manchester

Beam Halo

- Transverse beam halo: defined as particle population above 3 $\sigma_{\rm N}$
- Measured since LHC start: **heavily populated halo**, up to 5% total intensity [<u>ref.</u>]
 - Risk for loss spikes, dumps, damage with orbit jitters
- Precise measurements only possible with destructive **collimator scrapings**:
 - Move TCP inwards

he University of Manchester

- Measure induced losses with
 - Beam Loss Monitors (BLMs)
 - Beam Current Transformers (BCTs)
- Integrate measured losses to reconstruct the scraped beam halo
- Ongoing effort from BI in providing a passive measurement of beam halo by means of a coronograph (See talk by J. Pucek)

Examples of measurement

Cumulative beam halo intensity

Beam halo population

- Metric of interest for operation
- Important to check when deploying new configurations
- <u>A recent source on the topic</u>

 Measure of interest for testing scale-law models (more on that later)

Visualizing the beam halo bunch-by-bunch

he University of Manchester

Electron cloud and beam halo

- Recent halo measurements performed at Flat Top (@MD9325)
- Comparison of halo population intra-train between different train typologies
 - 25ns: standard train
 - BCMS: 25ns batch compression, merging, and splitting train
 - 8b4e: train designed to minimize electron cloud presence
- Strong correlation between halo
 population and electron cloud intensity

Collimator scraping @ Flat Top

Courtesy of M. Rakic

Beam halo: a slow repopulation

- A collimator scraping removes the beam halo
- Repeated measurements in same fill suggest long repopulation times (order of hours)
- Huge challenge for making comparable measurements!

Challenges in simulating the beam-halo

Beam halo formation simulation is an open challenge

- Plethora of effects at play
 - Beam halo clearly affected by multiple (modeled and still-to-be-modeled) elements
 - No direct reproducibility of quantities/differences achieved yet
- High statistics required
 - Achievable thanks to Xsuite GPU implementation
- Long simulation timescales required
 - Halo re-population after a scraping observed to take hours
 - Few minutes of LHC operation can be simulated
 - Latest promising direct simulations (10⁴ particles, 30min of LHC, 3 days on V100 NVIDIA GPU) by <u>K. Paraschou</u>

Investigating scale-laws: diffusion models

- Natural extension of established Dynamic Aperture scale-laws [<u>A. Bazzani et al.</u>] and local diffusion measurements performed in the LHC [<u>A. Gorzawski et al.</u>]
- Description of beam distribution as solution of a Fokker-Plank equation

$$\frac{\partial \rho(I,t)}{\partial t} = \frac{1}{2} \frac{\partial}{\partial I} D(I) \frac{\partial}{\partial I} \rho(I,t)$$

where perturbations are summarized by the diffusion coefficient with functional form:

$$D(I) \propto \exp\left[-2\left(\frac{I_*}{I}\right)^{\frac{1}{2\kappa}}\right]$$

- *I* is the action variable
 - $\circ \sigma^2$ evaluated with measured beam emittance
- Equation valid only for the beam-halo!
- Beam core expected to follow a separate regime (mostly due to Beam-beam head-on effects)

Observable from our diffusive model

BEAM-HALO POPULATION

$$\rho_{\rm eq}\left(I, I_{\rm a}\right) = \alpha\left(I_{\rm a}\right) \int_{I}^{I_{\rm a}} \frac{\mathrm{d}x}{D(x)}$$

Measured by means of Collimator Scrapings

- Collimator jaw initially at I_a;
- Multiple fast inward steps to scrape the beam;
- Integral of beam-loss signal during inwards steps yields beam-halo population.

BEAM-LOSS SIGNAL AT DIFFERENT AMPLITUDES

$$J_{\rm eq}\left(I_{\rm a}\right) = \left. D\left(I_{\rm a}\right) \frac{\partial \rho_{\rm eq}(I)}{\partial I} \right|_{\left(I_{\rm a}\right)}$$

Measured while retracting the collimator

- Collimator jaw at low sigma;
- Outward movements or alternation of outward and inward movements with pauses in between;
- J_{eq}; is the stabilized beam-loss signal

Measurement performed at the end of Beam-Beam wire compensation MD in 2022

- Special configuration dominated by BB effects
- Wire compensation available in B2

An example of diffusion reconstruction

Overall great fit reconstruction

CÉRN

- Able to relate both beam-halo and equilibrium beam loss signal
- Lower diffusion reconstructed with Beam-Beam wire compensators on

Initial analysis of B1 presented at IPAC'23

.

• Complete work currently under peer-review @ C.E. Montanari et al. "Measurement of the nonlinear diffusion of the proton beam halo at the CERN LHC"

Enhancing single-particle tracking: Chaos Indicators

 $\mathbf{x}(t) + \boldsymbol{\delta}(t)$

 $\mathbf{x}(t)$

 $\|\boldsymbol{\delta}(0)\|$

- Chaos: sensitivity of a particle orbit to . initial perturbations
- Vast literature in mathematical physics ulletand astrophysics
- In accelerator physics, some performance studies based on chaos have been performed in the past with, e.g., the Fast Lyapunov Indicator (FLI)
- We are currently studying further • applications of more advanced chaos indicators
- Implementation (CPU/GPU) on Xsuite •

- 5.5

.5 .0 log10(stable turns)

3.5

–3.0 ž

-3.5

Example of FLI evaluation on HL-LHC lattice

- Lattice considered with and without Beam-Beam effects
- Possible to observe the chaos topology with the insertion of BB weak-strong lenses
 - Very thin chaotic border and resonance-like lines for the case without BB
 - Large regions of chaos appearing for the case with BB long-range;
- Light chaos can be observed up to the core region of the beam due to head-on BB;
- Chaos topology reflects interplay of nonlinear contributions (beam-beam, longitudinal motion, etc.)
- Ongoing work: connect observed chaos timescales to diffusion presence/halo population

Hierarchy breaking: observations and ongoing work

The problem

CÉRN

April 2024 observations

he University of Manchester

 10^{-1}

Ideal Hierarchy

TCPs

Multiple elements at play

Ultimately, the problem was related to **various contributions**:

- Not related to collimation alignment
- Long-range beam-beam effects (stronger at low β*) inducing changes in tune and orbit
- Derivative tune-shift, exciting 3Qy resonance, inducing stronger losses at the secondary collimator (K. Paraschou and X. Buffat)
 - Mitigations of RDTs under development (<u>E. Maclean</u>)
- Vertical dispersion drastically reducing the collimator margin (<u>D. Miriarchi</u>)
 - Issue solved with review of dispersion correction strategy at IR7

K. Paraschou

9 October 2024

Ongoing work: beam-beam (and more) in Xcoll!

Beam-beam simulations through Xsuite: Xfields

Collimation simulations via Xsuite: Xcoll

- Incorporates native scattering capabilities (Everest) derived from the established SixTrack tool
- Offers potential to utilize FLUKA and Geant4

Modular development of Xsuite makes complex simulations more and more approachable!

Development ongoing by F. Van der Veken (recent talk)

Conclusions

- Measurement and characterisation of beam halo is a critical open challenge for HL-LHC operation
 - Beam halo interacts with everything in its path, responds to every influence, and requires specialized techniques for precise measurement and assessment
 - Recent measurements offer quantitative assessments on beam halo features in diverse LHC configurations
 - Simulation and modeling efforts for beam-halo are ongoing, considering multiple promising paths
- Recent hierarchy breaking problem highlights how advanced LHC configurations interlinks various phenomenons, usually treated as isolated
 - Simulation tools are being updated accordingly to better incorporate more phenomena, such as beambeam in collimation simulations

Thank you!

Recall of Run2 Halo measurements

			Final collimator position [σ] Halo content [%]				Halo content [%] at			
	Fill number	No. of Bunches	B1H	B1V	B2H	B2V	B1H	B1V	B2H	B2V
10/05/2016	4910	313	4.1	3.9 1.2	4.0	4.1				
10/07/2016	5105	2076	3.8	3.1	3.1	3.4				
13/01/2010			0.0	1.7	0.9	0.2				
15/06/2017	5834	900	4.6	2.5	1.4	1.4	4.6			1.4
10/06/2017	5848	1741	3.2	/	3.1	/				
19/00/2017	5040	1741	8.7	/	8.1	/				
20/06/2017	5849	2029	3.2	/	/	3.1				
			3.5	23	35	2.8				
06/08/2017	6052	2550	3.0	5.2	1.0	5.5				2.8
13/00/2017	6194	 No. of Bunches 313 2076 900 1741 2029 2550 224 2550 2550 300 	2.3	2.4	2.1	2.2	6.2	1.5	0.1	1.8
13/03/2017	0154		29.5	7.9	6.8	19.6				
25/09/2018	7221	2550	/	3.0	/	3.2		5.6		
20/00/2010			/	5.6	/	0.6				
06/10/2018	7264	2550	2.9	3.1	3.3	2.8	1.5			1.0
20/10/2010	7000	200	3.5	2.0	2.9	2.0				
30/10/2018	7392	300	10.0	9.4	5.7	2.5		0.7		0.2

Recall of Run3 Halo measurements

06/10/2022 25/10/2022 12/11/2022 09/06/2024 09/06/2024 29/06/2024 12/08/2024 22/08/2024

/ANCHESTER

he University of Manchester

			Final collimator position [σ]				Halo content [%] at			
			Halo content [%]				3.0 [σ]			
Fill number	Stage	No. of Bunches	B1H	B1V	B2H	B2V	B1H	B1V	B2H	B2V
8233 EOF	200	3.0	3.1	3.2	3.1	0.3	0.2	0.2	0.6	
		0.4	0.2	0.3	0.6			0.5	0.0	
8313 EOF	1200	3.1	3.5	3.0	3.6	10		0.0		
	EOF	1200	1.2	0.6	0.3	1.4	1.2		0.2	
8387 EOF	2462	3.5	3.7	3.7	3.4					
		0.9	0.3	0.1	0.7	1				
9754 INJ	624	2.8	2.8	2.7	2.7	3.3	1.5	1.0	1.0	
		4.7	2.8	4.0	4.5			1.0	1.0	
9756 INJ	624	2.8	2.9	2.7	2.7	24	1.7	2.0	2.0	
		5.0	2.4	3.7	3.9	3.0			2.0	
9808 EOF	1238	2.6	/	2.6	/	0.8	0.0			
		2.6	/	1.1	/					
9996 EOF	505	0054	3.1	3.2	3.2	3.5				
	2351	0.7	0.1	0.4	0.2	1				
10045 INJ		0/	/	1.7	/	1.5		4.0		4.0
	90	1	26.5	/	31.5	1	1.3		1.3	

