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> Physics with with 1.6-10** p/b - Limited by beam induced heating in
non-conforming RF modules. Limitation lifted for operation next year
by exchanging modules during the YETS.

> Full cycle with 1 high intensity train (36b, 1.8-10** p/b) in MD. Limited

by dump window until Run 4.
— Next milestones : Physics with 1.8-10" p/b, collisions of 12b trains with 2.3-10% p/b

> Injection of trains of 2x48b (tot 348b) with 2.3-10** p/b in MD, but not

fully ready for operation see B. Karlsen-Baeck
— Next milestone : Beam quality preservation with 2.3-10* p/b (losses at start of

the ramp). Injection of longer trains (HL-LHC baseline : 4x72b per injection) in MDs
(2.3-10" p/b) and potentially in operation (1.8-10* p/b)
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Beam induced heating : operational experience

« Main consequences of large electromagnetic fields in
surrounding components:

* Vacuum spikes (TCLD, TDI, vacuum modules, LHCb VelLO)
* Vacuum degradation (BGI, TDIS, TOTEM)
« Damage (BSRT, TDI, BGI, vacuum modules, ALFA)
* Abnormal temperature readings (2-beam collimators)
* Large temperature that prevents injection (MKI, collimators)
- Intensity limitation (vacuum modules)
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« Beam induced heating issues can come from:

* Unknowns and non-conformities in newly installed elements (TCLD, TDIS in 2023)
* Increase in beam/bunch intensity (BSRT, MKI, BGI, vacuum modules) “ ”
* Slow degradation of already installed equipment (TDI, vacuum modules?) } Latent weaknesses

e Towards HL-LHC parameters

* Increase of at least a factor 2 of beam-induced heat deposition (at constant bunch length)
* Several unexpected issues may come up on the way to HL-LHC parameters (many new equipments)
* Improved control of bunch length put in place this year will help
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Beam induced heating status
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Injection losses

uffered from injection losses in
2022/23 (hybl’ld, 236b / inj)See. S. Morales

— Cause(s) not clearly identified (strong year-to-
year and fill-to-fill fluctuations, beam-to-beam
differences)

— New BLMs and new Matching of the TL with
updated transfer function for the quads should help
the situation

Current operation with short trains
(108b / inj) offers large operational
margin

— Need tests in MD and in operation with longer

trains at injection : Consider few weeks with hybrid
scheme in 2025 ?
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Losses in ADJUST

Beam losses in ADJUST were
close to dump levels see s. Morales
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Losses in ADJUST

Beam losses in ADJUST were

close to dump levels see s. Morales
— Clear correlation with tail
population see. s. Kostoglou
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Losses in ADJUST

Beam losses in ADJUST were

close to dump levels see s. Morales
— Clear correlation with tail
population see. s. Kostoglou

> Chromaticity and octupole
requirement are set by flat-top
(w/o head-on) and the DA is

limited only once in collision.
— Need to quantify

experimentally the link between

the DA drop and the losses in
ADJUST
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Stability requirement at flat top
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Stability requirement at flat top

(8]

—<— Linear RF —— NLRF

s

The existence of a ‘sweet spot’ for
chromaticities between 15 and 20 units

was demonstrated experimentally

- Itis linked to the suppression of odd head-
tail modes by the non-linearity of the RF
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Stability requirement at flat top

(8]

The existence of a ‘sweet spot’ for
chromaticities between 15 and 20 units

was demonstrated experimentally

- Itis linked to the suppression of odd head-
tail modes by the non-linearity of the RF

max3AQ [1079]

o

> Currently we operate with a significant
margin in chromaticity (20 units), we
could operate with a lower chromaticity
(closer to the threshold) if the control is

sufficient

— 17 units / 150A could be tested
operationally in 2025/2026
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Experience with BTF, AC-KFC and Schottky

Tested new tools for chromaticity
measurement in operational conditions at flat
top, squeeze and collision (excitation on one

bunch with full circulating beam)
- No losses or emittance growth
- Excellent signal, but post processing requires further
improvement
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Experience with BTF, AC-KFC and Schottky

Tested new tools for chromaticity
measurement in operational conditions at flat
top, squeeze and collision (excitation on one

bunch with full circulating beam)

No losses or emittance growth

Excellent signal, but post processing requires further
improvement

> A new method based on ADT-AC dipole and

head-tail measurement was tested a flat top . ...

but lead to beam degradation that needs to be
understood
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Experience with BTF, AC-KFC and Schottky

Tested new tools for chromaticity S ML AN
measurement in operational conditions at flat = Mm"ﬂﬂ = MM’M{

top, squeeze and collision (excitation on one e eerwases seowasea
bunch with full circulating beam) =5
- No losses or emittance growth == s
- Excellent signal, but post processing requires further =
|mprovement e e A e
> Anew method based on ADT-AC dipole and _
head-tail measurement was tested a flat top . .,
but lead to beam degradation that needs to be ; «\]
understood
> Chromaticity measurement based on Schottky ‘s w0 " acomaric
signal are promising but remains challenging Y ~.
at flat top see K. Lasocha @ LBOC 22.10.2024 =TT )
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Chromaticity and octupole requirement in collision

Chromaticity and octupoles in collision are
constrained by the stability of non-colliding

bunches (same as flat top).
- If needed their brightness could be reduced to allow
for optimisation of the colliding bunches’ quality
preservation
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Chromaticity and octupole requirement in collision

Chromaticity and octupoles in collision are
constrained by the stability of non-colliding

bunches (same as flat top).
- If needed their brightness could be reduced to allow
for optimisation of the colliding bunches’ quality
preservation

Chromaticity is also constrained by e-cloud
instabilities with ‘low’ bunch intensities
(~10%p/b)
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Chromaticity and octupole requirement in collision

Chromaticity and octupoles in collision are
constrained by the stability of non-colliding
bunches (same as flat top).

- If needed their brightness could be reduced to allow
for optimisation of the colliding bunches’ quality
preservation

Chromaticity is also constrained by e-cloud
instabilities with ‘low’ bunch intensities

(~10%p/b)

In 2024 after TS, the chromaticity was
reduced systematically during the fast part of
B* levelling and kept low in collision (- 6
units)
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Chromaticity and octupole requirement in collision

Chromaticity and octupoles in collision are
constrained by the stability of non-colliding

bunches (same as flat top).
- If needed their brightness could be reduced to allow : ..
for optimisation of the colliding bunches’ quality
preservation

Chromaticity is also constrained by e-cloud

instabilities with ‘low’ bunch intensities .
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In 2024 after TS, the chromaticity was
reduced systematically during the fast part of
B* levelling and kept low in collision (- 6
units)
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Chromaticity and octupoles in collision are
constrained by the stability of non-colliding

bunches (same as flat top).
- If needed their brightness could be reduced to allow : ..
for optimisation of the colliding bunches’ quality
preservation
Chromaticity is also constrained by e-cloud

instabilities with ‘low’ bunch intensities
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In 2024 after TS, the chromaticity was
reduced systematically during the fast part of

B* levelling and kept low in collision (- 6
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Chromaticity and octupole requirement in collision

Chromaticity and octupoles in collision are
constrained by the stability of non-colliding

bunches (same as flat top).
- If needed their brightness could be reduced to allow - .. 52 ma
for optimisation of the colliding bunches’ quality
preservation

Chromaticity is also constrained by e-cloud

instabilities with ‘low’ bunch intensities .
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Experience with negative polarity of the octupoles

There is an interest to change the
polarity of the octupole for the full
cycle to optimise the DA in
collision see s. Kostoglou

i i CERN
HiLu Y )

)




There is an interest to change the
polarity of the octupole for the full
cycle to optimise the DA Iin

collision see s. Kostoglou
- Over the years, a series of MDs were
realised in this configuration, but we
lack operational experience
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Experience with negative polarity of the octupoles
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Therg IS an interest to change the == negative polarity
polarity of the octupole for the full AR of the

cycle to optimise the DA in E ~|octupoles, 733b

collision see s. Kostoglou
- Over the years, a series of MDs were
realised in this configuration, but we
lack operational experience
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— Next MD block: lifetime optimisation
with e-cloud at injection and negative
octupole polarity

— Operating the LHC in 2025/26 with
the negative polarity would provide
valuable experience though the gain in

performance might remain marginal
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Beam-beam and collimation hierarchy : Linear

Inear effects from beam-
beam interactions seem well
under control
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Beam-beam and collimation hierarchy : Linear

Inear effects from beam-
beam interactions seem well
under control
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Beam-beam and collimation hierarchy : Linear

Inear effects from beam-
beam interactions seem well
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Beam-beam and collimation hierarchy : Non-linear
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Beam-beam and collimation hierarchy : Non-linear

In the presence of beam-beam (and  oxs| [| | [ e =
chromaticity), the transverse DAis  § [/ g
mostly limited for off-momentum o\ |
particles N
— Such transverse losses are strongly — oaisp. 1 ||
impacted by dispersion in IR7. They do BB izt e O

not appear in loss maps which are either
transverse or off-momentum, but not
both simultaneously

> Particles trajectories at these large
amplitudes can be heavily distorted
by specific resonance. Corrections
are envisaged but require further
Studies see E. Maclean

i i CERN
‘LMMD Qﬂ

W° S. Kostoglou, Phys. Rev. Accel.

-17}> _Beams 23, 121001 (2020)

—4.0

452

-0 f

ﬁ
=55 (;
—6.0<
—6.5

-1.0

Oy

Vertical tune

Horizontal tune, Qy




In the presence of beam-beam (and
chromaticity), the transverse DA is
mostly limited for off-momentum

particles
— Such transverse losses are strongly
impacted by dispersion in IR7. They do
not appear in loss maps which are either
transverse or off-momentum, but not
both simultaneously

> Particles trajectories at these large
amplitudes can be heavily distorted
by specific resonance. Corrections
are envisaged but require further
Studies see E. Maclean
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Summary

Beam induced heating remains a major concern when increasing the bunch
intensity and installing new equipments

— EXposing issues early is key in avoiding down time during high luminosity production
Measures were implemented to mitigate operational issues encountered
with losses during injection of high intensity trains

— Operational experience with long (hybrid) trains is desirable

> Low tail population and good DA at the start of collision are key to maintain

losses under control
— Impedance reduction (see L. Giacomel, B. Lindstrom), tune, chromaticity and detuning control,
negative polarity of the octupoles




Summary

Beam induced heating remains a major concern when increasing the bunch

Intensity and installing new equipments

— EXposing issues early is key in avoiding down time during high luminosity production

Measures were implemented to mitigate operational issues encountered

with losses during injection of high intensity trains

— Operational experience with long (hybrid) trains is desirable

> Low tail population and good DA at the start of collision are key to maintain
losses under control

— Impedance reduction (see L. Giacomel, B. Lindstrom), tune, chromaticity and detuning control,
negative polarity of the octupoles

> Loss mechanisms breaking the collimator hierarchy and linked to beam-

beam effects were observed
— Linear effects are under control, but can eat part of the margin. Other effects can be
shadowed when validating the machine at low intensity.
- Transverse losses of off-momentum particles are not covered by present betatron+off-
momentum loss maps scheme.
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Tune diagram
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Phase space distortion happens when you get close to resonances.

* Footprint was not simulated with the exact 2024 configuration, but remains
qualitatively similar.
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Initialize particles with

Small horizontal amplitude: x= 0.50,p,=0
Large vertical amplitude: y= ~4c,p,=0
Large longitudinal amplitude: { = 0.3m, 6=0

Vertical TCSG

Synchrotron oscillations + chromaticity brings particles to the
3Qy resonance which heavily distorts the phase space.

Before reaching 5¢ at the TCP, particle reaches a larger
maximum position in TCSG.
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