

%TRIUMF

Preparation for RFD Cavity & CM Testing @ TRIUMF

Zhongyuan Yao

Canadian Contribution, WP4, HL-LHC Oct. 9th, 2024

Dressed RFD Cavity Test

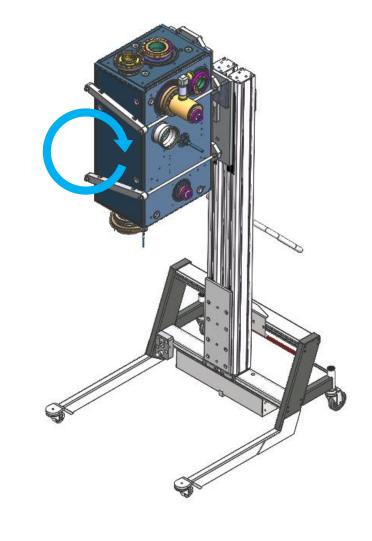
Part 1

Acceptance Test @ TRIUMF

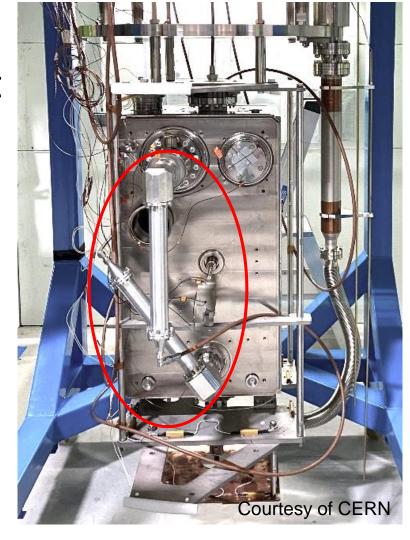
- TRIUMF will receive qualified dressed cavities from AUP under vacuum and with test coupler
- Goal is to confirm the cavity has not been degraded during transport and is acceptable to be installed in the CM

Acceptance Criteria & Test Plan

- Acceptance criteria are established in a document from AUP following CERN's engineering specification
- Part B document (EDMS 2339758) has been revised after the latest release
 - Administrative limit and failure mode analysis added
 - Being discussed with CERN
- TRIUMF drafted a step-by-step test plan (unreleased)
 - To be updated according to the new release of Part B document



Cavity Handling Cart & Fixture


- Dressed cavity will be taken out of shipping container according to CERN unpacking guidelines (EDMS 2620111)
- Cavity will be moved around by cavity handling cart
 - Cart picks cavity up in horizontal orientation
 - Manipulation fixture allows to rotate cavity to vertical orientation for cryogenic insert assembly
 - Cart and fixture are ready to use

RF Measurements

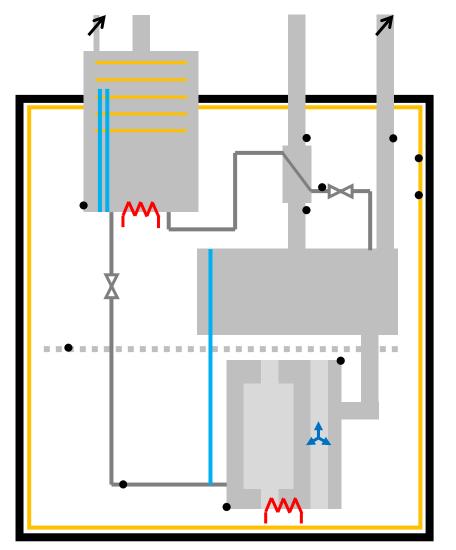
- Cavity will be tested 'as delivered'
- Visual inspections and review transport shock data will be included
- RF measurements include VNA measurements at warm and cold tests at both 4K and 2K
 - 2K results as the verification of acceptance
- A full set of 25/50Ω adapters is required before any RF measurement

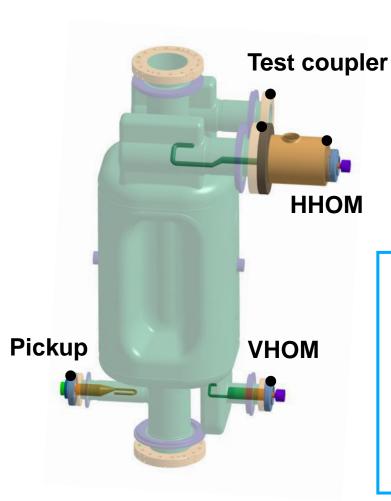
lerated

Cryogenic Insert

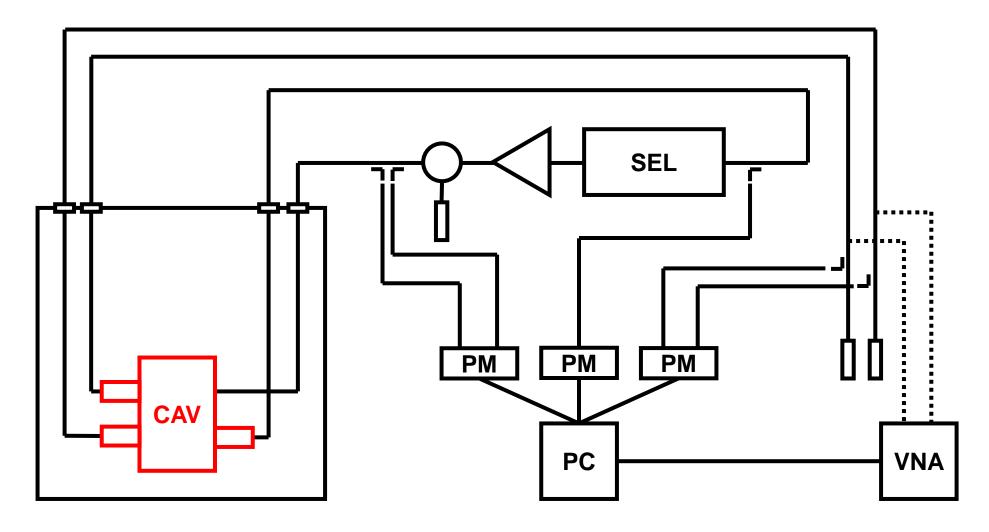
 4K/2K unit to produce 2K LHe inside multipurpose cryostat for jacketed mode test

- Commissioned with a dummy load
 - Dynamic load up to 25W at 2K
 - Sufficient for cavity acceptance test (≤ 10W at 4.1MV)
- To be tested with the dummy cavity later this year
 - To verify cooldown speed with a proper cold mass
 - Dummy cavity is ready to use
- Assembly with dressed cavity
 - Cavity mounted to support plate
 - Cryogenic connections to LHe inlet, exhaust and HHOM cooling





Cold Test – Diagnostics



- pressure gauges
- temperature sensors
- ▼ cryogenic valves
- level probs
- fluxgates
- **M** heaters

Cold Test – RF

Ç

Summary – Cavity Test

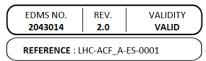
- Documentation preparation
 - Discussion and revision in progress
 - To be approved by CERN prior to releasing and the series production cavity tests
- Technical preparation
 - Cavity manipulation, cryostat and RF are ready to use
 - 4K/2K unit will be tested again with the dummy cavity before dressed cavity arrival
- Schedule
 - The 1st dressed cavity is scheduled to be delivered by Jan. 31st, 2025 from AUP
 - The full set of 25/50Ω adapters will be required to be delivered by Dec., 2024 from CERN

Cryomodule Test

Part 2

RFD Cryomodule Test

- RFD cryomodule will be cold tested at TRIUMF prior to shipping to CERN
- Cold test will partially verify functionality and performance
 - To demonstrate the quality of CM assembly
 - To expose CM issues before shipment
 - To mitigate risks of failure on arrival at CERN
- Cold test at TRIUMF will not replace the acceptance test in CM engineering specification (EDMS 2043014)
- The final acceptance test will be performed at CERN



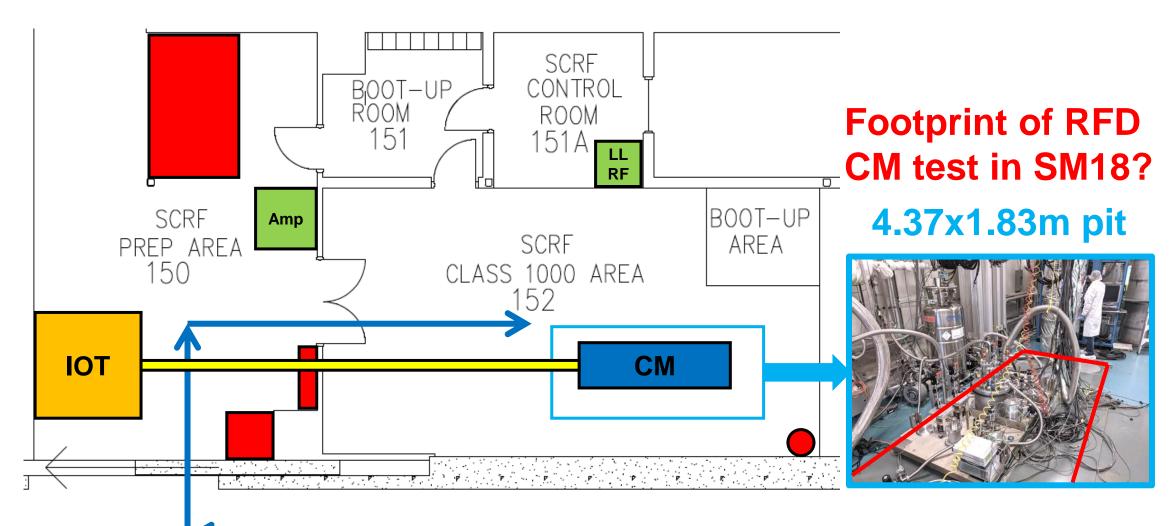
Test Strategy

- Requirements can be found in section 14 of CM engineering specification (EDMS 2043014)
 - Vacuum cycles
 - Warm RF checks
 - Cooldown to 77K (w/ LN2)
 - Cooldown to 4K
 - Heat loads at 4K
 - RF tests at 4K
 - No 2K test

13.5 Documentation related to cryostating	44	
14 Final tests on the assembled cryomodule: Procedures and Acceptance Criteria	45	
14.1 Vacuum cycles and deformation repeatability (insulation vacuum cycles)	45	
14.2 Final RF tests at warm on cryomodule	45	
14.3 Cool-down tests at 77 K (liquid nitrogen boiling point)	46	
14.3.1 Functional test	46	
14.3.2 Position monitoring at cold	46	
14.3.3 Pressure monitoring	46	
14.3.4 Mechanical tests on the tuner	46	
14.3.5 RF tests at 77 K on the assembled cryomodule	47	
14.4 Cool-down tests at 4 K (optional)	47	
14.5 Cool-down tests at 2 K	47	
14.5.1 Tests	47	
14.5.2 Heat loads measurements	47	
14.5.3 RF tests at 2 K (nominal operating temperature)	47	
14.6 Documentation related to final tests on cryomodule	48	
15 Labelling/Marking		
16 Storage		

Can the second beam pipe be left w/o LHe cooling like the SPS configuration?

Discovery, accelerated


4K Tests Goals

Test	CERN Spec. (EDMS 2043014)	TRIUMF Capability
Frequency of deflecting mode	400.79 ± 0.15MHz @ 2K	Spec. @ 4K
Q ₀ -V _t curve w/ P ₀ at 4.1MV	≤ 10W @ 2K	Spec. @ 4K and 3.4MV (~27W)
Quench field value	No spec.	X
LFD	≤ 865Hz/MV ²	✓
df/dp	≤ 300Hz/mbar	Positive or negative?
HOMs frequencies & Qs	Full spectrum	✓
Output power via HOM couplers	≤ 6.7W H & ≤ 3.4W V @ 4.1MV	≤ 4.6W H & ≤ 2.3W V @ 3.4 MV
Test on modes around 760MHz	728~754MHz, Q _e 150~500	\checkmark
Coupling of ancillaries	P _{pu} 0.95~1.5W @ 3.4MV	✓
Field emission onset	< 50µSv/hr	Feasibility TBD
Multipacting levels (FPC)	< 1×10 ⁻⁸ mbar @ full power	Spec. of cavity MP and FPC @ 13kW
Thermal cycling (15K-2K)	≤ ±5% changes in 3 cycles	15K-4K
Tuner test	Linearity, hysteresis and backlash	Spec.
Stability of operation	12hr stable operation	X

Test Area

15

HILUMI HL-LHC PROJECT

Required RF Components

- 100kW IOT to receive operator manual during this meeting
- 6" coaxial transmission line TRIUMF to provide route to CERN
- Coaxial bi-directional coupler
- 6" coaxial to WR2300 adaptor
- WR2300 waveguide if needed
- Circulator and dummy load
- Interlocks w/ manual
- 25/50Ω adapters (same set as cavity test)
- Internal 25Ω coaxial lines
- RF windows on OVC
- All above will be provided by CERN, inventory confirmation and detailed technical/delivery information will be very helpful

Jiscovery, accelerated

Required Components/Information

- Tuner controller to be provided by CERN
- FSI system and procedure to be provided by CERN
- Controllers of beam vacuum instruments –to be determined
- Isolation vacuum
 - Pressure relief to be provided by CERN
 - Gauge assembly w/ controllers –to be determined
- He guard w/ gauge controller to be determined
- Full list of sensors and heaters require information ASAP for procurements

Discovery, accelerated

Summary – CM Test

- TRIUMF will perform CM test according to specification except 2K cold test
- 4K test will verify as many requirements as possible to derisk failures of the delivery at CERN, but can not replace the 2K acceptance test
- Detailed tests and requirements need to be discussed and agreed between CERN and TRIUMF
- Planning of test site and RF setup is in progress
- Deliverables for CM test need to be confirmed with CERN
 - The 1st CM test is anticipated in Q4 2026
 - Deliverables are required to be received before Q4 2025

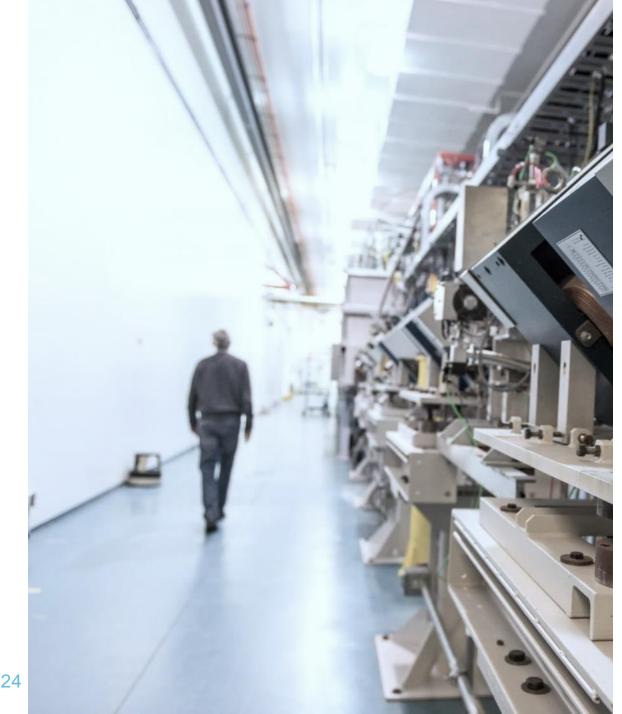
Discovery, accelerated

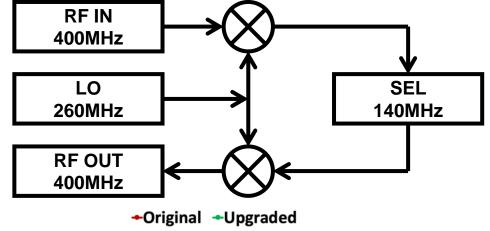
***TRIUMF**

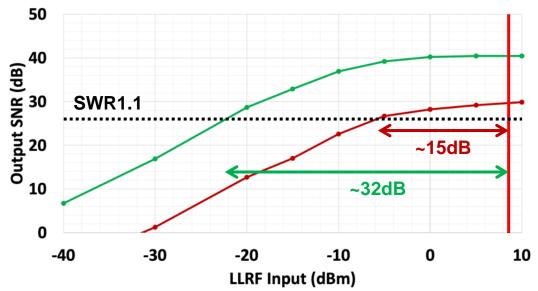
Thank you Merci Grazie

www.triumf.ca

follow us @TRIUMFLab

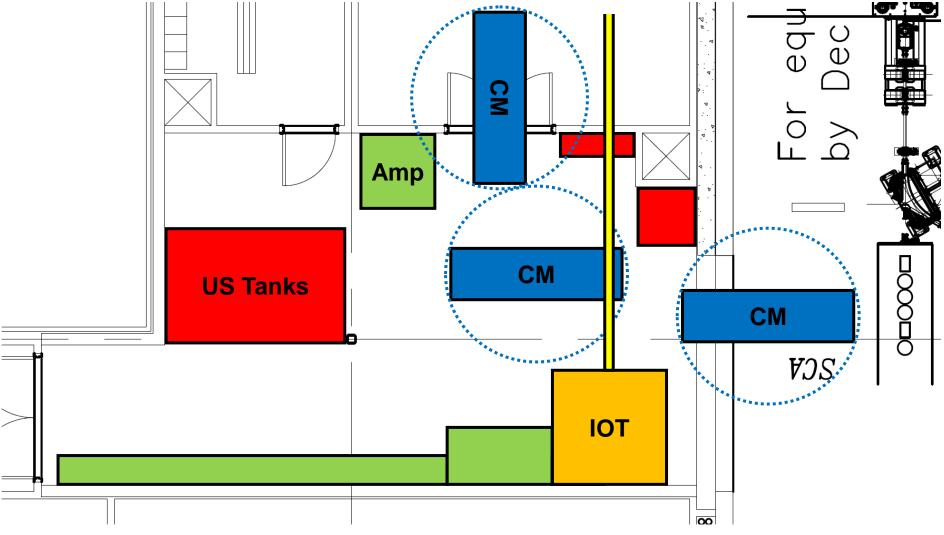


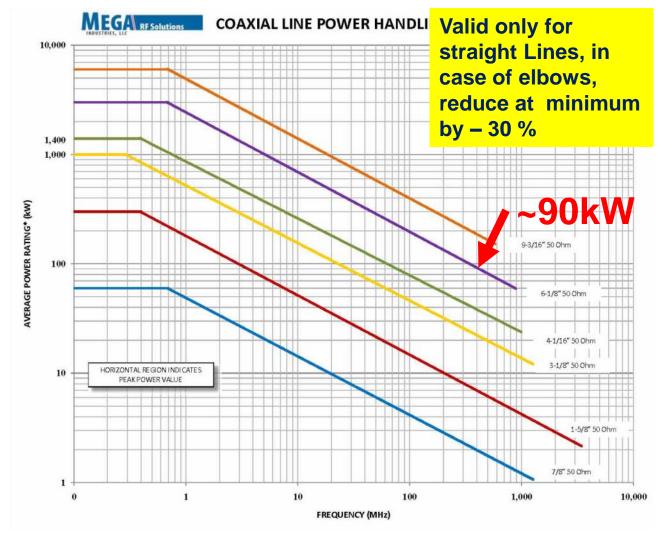



Cavity Test – HPRF

- Amplifier 500W Solid-state 69-651MHz
- Circulator 500W 350-400MHz
- Dummy loads
 - Drive 1500W
 - HOMs 20W 10dB attenuator in front of 2W dummy load
- Directional couplers
 - Drive 1000W 40dB bi-directional 100-500MHz
 - HOMs 2W 20dB 1-1000MHz
- Power meters Agilent E4419B 0.01-18GHz -70-+20dbm

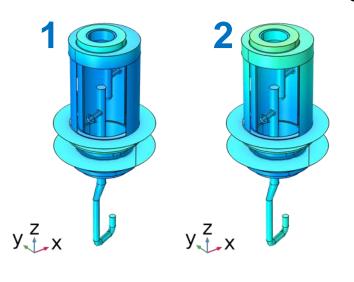
- Multi-purpose 140MHz SEL
- Freq. up/down converter
- Required voltage range
 - Vt 0.1~4.1MV 32dB
- Modified LLRF to provide the required dynamic range with an equivalent SWR<1.1

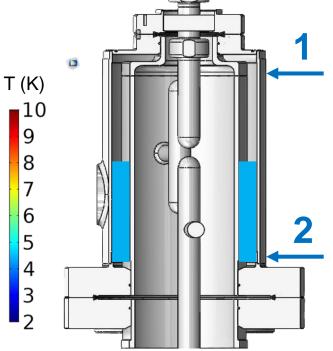


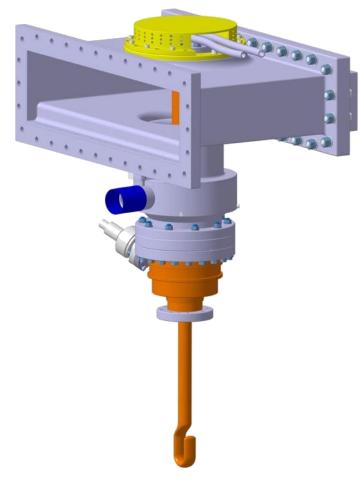

CM Test – IOT

CM Test – Transmission Line

- -6-1/8" coaxial line
 - Capable for ~60kW
 - Required RF power
 - -20kW @ 4.1MV
 - -13kW @ 3.4MV
 - 4.1MV OK for TW
 - WG circulator required
 - 3.4MV OK with SW

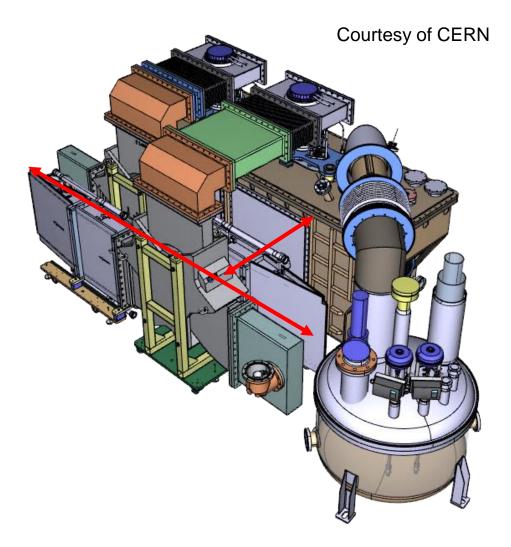


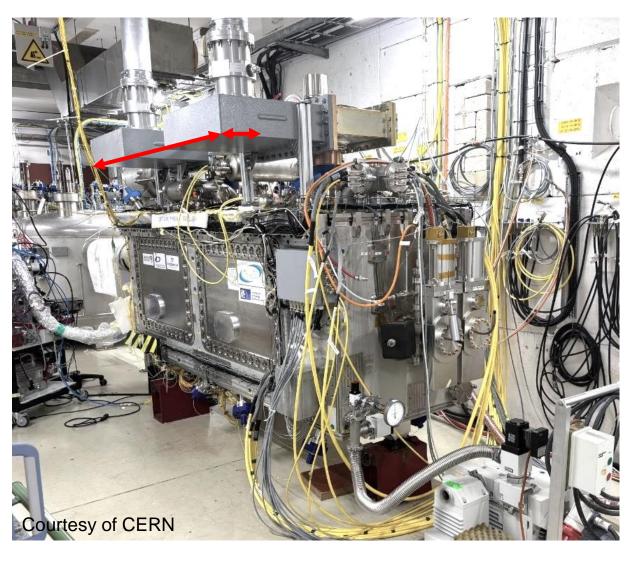




CM Test - Couplers

- FPC
 - Air cooling OK for 13kW power?
- HHOM
 - 4K LHe cooling





CM Test in M7

