

RFD HOM Coupler Challenges

Naeem Huque – Jefferson Lab

14th HL-LHC Collaboration Meeting. - Oct. 7th-10th 2024

Outline

- Scope
- Interfaces
- Current Challenges
 - Niobium Material Testing
 - Ceramic Brazes
 - Helium Line Configuration
- Series Production Status
- Summary

JLab Scope of Work

- Fabricate sets of RFD Cavity Ancillaries
 - Prototype: 3 sets (FY21/FY22)
 Complete
 - Pre-Series: 3 sets of HHOM Dampers (FY23/FY24) Complete
 - Series: 10 sets of HHOM Dampers (FY24/FY25)
- RF design is provided by AUP; mechanical design proposed by JLab with CERN as the design authority
- All activities are in full compliance with CERN Engineering Specification Document (EDMS 1389669 v2.6)
- Develop manufacturing drawings and strategy
- Develop brazing and welding processes and formal documents
- Share production information with the CERN MTF

JLab Scope of Work: Interfaces

- Interfaces are defined in LHCACFDC0001 CERN EDMS 2420659
- Drawings for JLab scope have been approved by CERN

HHOM DN100 CF

RFD Cavity

Current Challenges: Heat Treatment

- In early 2024, several Nb parts were inadvertently heat treated.
 - Inner can lids went through 950C for two hours (stress relief heat treatment for SS)
 - The material properties would need to be tested to ensure mechanical and RRR compliance
- Additional studies were carried out in reference to the two-step brazing process for the DN100 flange
- The following was to be verified:
 - The accidental heat treatment does not overly reduce the Nb RRR and yield strength
 - The second step of the two-step braze does not overly reduce the Nb RRR and yield strength

Nb can lids (top) and DN100 braze assemblies which use 2-step brazing (bottom)

RRR Tests

Off-Normal 950C Heat Treatment

Sample	Temperature	Description	RRR						
1	None	Baseline	312						
2	1X 950 C 1X 1040 C	2 hours dwell (same as SS HT) Same as brazing run	329						
3	1040 C	Same as brazing run	332						
		RRR Spec	300						
	Effect of Second Brazing Run								
Sample	Temperature	Description	RRR						
1	None	Baseline	270						
2	1040 C	Same as brazing run	282						
3	2X 1040 C	Same as brazing run	286						
		RRR Spec	300						

- RRR values are acceptable to CERN
- Furnace runs do not lower RRR

Tensile Testing

Off-Normal 950C Heat Treatment								
#	Temp	Description	R _{Р 0.2} (MPa)	R _м (MPa)	A _g (%)	A _{BREAK} (%)		
1	None	Baseline	79.5	157.5	32.5	63.0		
2	1X 950 C 1X 1040 C	2 hours dwell (same as SS HT) Same as brazing run	37.6	130.2	30	44		
3	1040 C	Same as brazing run	37.3	128.5	29.3	41.2		

	Effect of Second Brazing Run								
#	Temp	Description	R _{Р 0.2} (MPa)	R _м (MPa)	A _g (%)	A _{BREAK} (%)			
1	None	Baseline	52.1	158.8	37.2	67.4			
2	1X 1040 C	Same as brazing run	48.3	136.0	27.8	35.6			
3	2X 1040 C	Same as brazing run	45.9	120.7	22.7	32.9			

Mechanical Properties

- The accidental heat treatment of the Nb did not affect the final yield stress (beyond the effect of the regular brazing run)
- The second furnace run of the DN100 two-step brazing process did not deteriorate the mechanical properties of the Nb
- The strength analysis was carried out using the lowest yield strength (EDMS 3086558) and was acceptable

Eduardo Cano-Pleite, CERN

Current Challenges: Ceramic Brazes

- CERN uses a rotatable titanium flange on the ceramic feedthroughs (below right)
- JLab uses a copper interface ring between the ceramic and a 316LN nonrotatable flange (below left)
- In particular, the concern is that the brazing/installation process will form cracks within the ceramic which will propagate over time
 - Destructive section is the only way to identify cracks
- The JLab design has been implemented on prototypes and has been included in a number of VTA cycles without failure

JLab Design

CERN Design

Ceramic Testing Conclusion

- Ceramic braze qualifications and testing have been ongoing for three years
- The presence of internal micro-cracks in the ceramic after brazing/mounting could not be measured with confidence.
- A setback was a batch of ceramics, bought from the same vendor and the same specifications as others, which had unknown inherent defects and failed upon mounting
- A final qualification run was held in January 2024
- The JLab design met the qualification goals, but was found to crack if the torque was raised from the spec of 10 Nm to 12 Nm
- Due to the risk of over-torquing occurring during the installation process, the CERN design was down-selected

Current Challenges – Helium Line Issue

- Helium line on HHOM damper's SS jacket (left image) in the wrong position
- Using this new position would result in changes to the cryomodule design
- Issue was not discovered during CAD model and drawing approval process at CERN
- Different design is possibly an artifact from an old LARP prototype (right image)
- Modifying existing dampers is not practical
 - The helium jacket is a pressure boundary and weld repairs would be subject to additional rules
 - The proximity of the Nb can inside the SS jacket makes any cuts risky
 - Additional welds on the part would cause distortion, bringing the dimensions out of tolerance

Outlet should be here

11

Reduced Scope

- Feedthroughs will be delivered to JLab for installation on jacketed cavities
- HHOM Dampers will be produced in advance of jacketed cavity delivery to JLab

Source	Feedthroughs	HHOM Dampers	Status
CERN	2 sets	2	At JLab
CERN	4 sets	-	Due Q1 FY25
JLab	-	4	Due Q2 FY25
JLab	-	6	Due Q3 FY25
CERN	8 sets	-	Due Q3 FY25

Production Status

Jefferson Lab Thomas Jefferson National Accelerator Facility

AU

Production Schedule

		2024			2025					
		Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun
HHOM 01 - 04	Assembly									
	Testing									
	Acceptance									
HHOM 05 - 07	Assembly									
	Testing									
	Acceptance									
HHOM 08 - 010	Raw Material Procurement									
	Part Fabrication									
	Assembly									
	Testing									
	Acceptance									

Summary

- JLab scope now includes only fabrication of HHOM Dampers
 - Three fabricated HHOM dampers are not usable due to interface issue.
- Material tests on Nb have validated JLab furnaces and brazing run effects on properties
- Ceramic brazing qualification was successful but CERN design will be used to reduce risk
 - Ceramic feedthroughs will be provided by CERN
- Procurement and assembly plans are in place at JLab to produce HHOM Dampers in time for installation on jacketed cavities

Thanks to the RFD Ancillary Team

- Fermilab Manuele Narduzzi, Colin Narug, Leonardo Ristori
- ODU Suba De Silva, Jean Delayen
- SLAC Zenghai Li
- CERN Nuria Valverde Alonso, Adria Gallifa Terricabras, Sara Domingo Gomez, Eric Montesinos, Simon Barre

16