

CERN

HL-LHC Crab Cavities: DQW & RFD HOM couplers fabrication challenges

Simon Barrière, CERN on behalf of the HL-WP4 team

14th HL-LHC Collaboration Meeting – Genoa, Italy – 09th October 2024

Outline

- Scope of Production
- Manufacturing Status
- Latest Challenges & Lessons Learned

Production Scope: DQW series

• HOM Couplers, HOM Feedthroughs, HF-HOM Couplers and Field Antennas for LHC-series DQW Crab Cavities are being produced at CERN Main Workshop

Production Scope: RFD series

- June 2024: Request from US-AUP to produce at CERN:
 - V-HOM Couplers, H-HOM Feedthroughs and Field Antennas for LHC RFD Crab Cavities
- H-HOM Coupler still under US-AUP scope (see presentation by N. Huque)

Why are these Objects a Manufacturing Challenge?

Specific (and expensive!) materials

• Extra-pure niobium, OFE copper, titanium grade 23 (TA6V ELI), stainless steel 316LN

(S)RF performance highly dependent on geometry and surface quality

- Final tolerances in few tenths of millimetres after many assembly (welding!) steps
- Machined and welded RF surfaces = specific parameters

Multi-Technology components with pressure joints

- ~13 technologies involved and intertwined
- Multiple activities and actors in parallel in different groups
- Advanced follow-up to fulfil HL-LHC quality standards (PED-related normative, MTF steps, traceability)

Manufacturing Status

HOM Couplers & Antennas

DQW – HOMC and Antennas

Pieces	Qty requested	Qty produced at CERN	DQW HOM FT	
HOM Coupler	36	<mark>15 done</mark> <mark>1 not conform</mark> 21 ongoing		
HOM Feedthrough	36 + 12*	<mark>20 done</mark> 16 ongoing <mark>12*</mark>	DQW HOM Co	oupler
HF-HOM Coupler	12 + 4*	<mark>12 done</mark> 4*		
Field Antenna	12 + 4*	<mark>12 done</mark> 4*		
* : additional qu last PSM in	uantities to be Sept 2024 (sp	produced following ares)	DQW Field Antenna	

HILLHC PROJECT

HF-HOM Coupler

DQW – HOMC and Antennas

RFD – HOMC and Antennas (1st set)

RFD H-HOM FT

Pieces	Qty requested	Qty produced at CERN		
H-HOM Coupler	2**	2** shipped		
H-HOM Feedthrough	2** + 4	2** + 4 shipped		
V-HOM Coupler	2** + 4	2** + 4 shipped		
Field Antenna	2** + 4	2** + 4 shipped		

** : prototypes built at CERN for RFD-SPS cryomodule

S. Barrière, CERN

RFD

V-HOM Coupler

RFD

H-HOM Coupler

RFD

Field Antenna

RFD – HOMC and Antennas (1st set)

RFD – HOMC and Antennas (2nd set)

brazing and machining ongoing

RFD V-HOM Coupler

Manufacturing Status

DQW & RFD – FPC Air Side

Pieces	Qty requested	Qty produced at CERN		
Water Antenna	28	<mark>28 done</mark>		
Water Flanges In/Out	30	<mark>30 done</mark>		
Transmission Line (wevaguide, body)	30	<mark>30 done</mark>		

DQW & RFD – FPC Air Side

Central Body and Cooling Collars

DQW & RFD – FPC Antenna

	Pieces	Qty requested	Qty produced at CERN				
	DQW Antenna	14	<mark>6 done</mark> 8 ongoing		DQW FPC Antenna		
	DQW Double Tube	14	<mark>8 done</mark> 6 ongoing	DQW Double Tube	0		
	RFD Antenna	14	<mark>8 done</mark> 6 ongoing		RFD		
	RFD Double Tube	14	<mark>8 done</mark> 6 ongoing	RFD Double Tube	FPC Antenna		
	Vacuum Body	28	28 done		RFD / DQW		
All missing assemblies are at very latest steps of production							
HILLHC		orrière CERN	14th HL J HC (Collaboration Meeting	09/10/2024 12		

DQW & RFD – FPC Antenna

HIL-LHC PROJECT

CERN

Manufacturing Status

Coaxial Lines

DQW & RFD – Coaxial RF Internal Lines

Pieces	Qty requested	Qty produced at CERN
LHCACFRL0195 x2 for 1 CM RFD x1 for 1 CM DQW	36	36 ongoing
LHCACFRL0198 x1 for 1 CM RFD x2 for 1 CM DQW	36	36 ongoing
LHCACFRL0261 x2 for 1 CM DQW	24	24 ongoing

All pieces needed for 2x DQW cryomodules and 2x RFD cryomodules will be ready in Dec 2024

DQW & RFD – Coaxial RF Internal Lines

Assembled Lines & Subcomponents for RFD Prototypes

Latest Challenges

Stains

We have been chasing stains (and their origin) the past few months We have upgraded our procedures with more visual checks, systematic replacement of gloves after touching other objects, extended care and protections for transport

Fingerprints (!) **Old gloves** Chemistry Drying Long storage

Most of the traces appear after the cleanroom

We are questioning ourselves if this is really a problem for RF

Scratches

Mostly caused by insufficient care during handling & transport between all fabrication steps

New standardized process using silk paper + foam reduces the risk

Visual control between all critical steps

Repair is possible:

When identified after final steps, polishing process defined for removal (polishing stone grit 8000 with isopropyl alcohol)

Devil is in the Details

- Stainless steel and titanium knives are key element to ensure light tightness in operation and for validation tests at 2 K.
- Cold leaks (at 2 K with superfluid helium) are impossible to locate at warm > root cause very difficult to assess
- All knives are inspected, defects or bumps systematically removed

CÈRN

Knives repair

- Polishing stone grit 8000 with isopropyl alcohol
- Abrasive blocks with different grits

Conclusions & Lessons Learned

• Fabrication of RF couplers & antennas in CERN scope is currently on track

- Level of attention and care should remain the same in prototyping phase and series production, until the last object is built. While many eyes are put on prototypes (= low quantity of items), keeping the same level of attention in series production has proven to be challenging
- Manufacturing and delivery of high-quality (S)RF couplers requires extended care on all handling and transport operations

• Understand criteria linked to **chemistry processes on multi-material objects** is of paramount importance: is beautiful the best?

Many thanks to all the colleagues involved in the production of such beautiful objects!

Special thanks to the EN-MME Manufacturing Team, and Sébastien, Francesco, Nuria & Eric (SY-RF)

Spare slides

Surface treatment of assembled heterogenous materials is a challenge Courtesy Leonel Ferreira (CERN)

S. Barrière, CERN

14th HL-LHC Collaboration Meeting - 09/10/2024

Quality & Documentation

TRAVELLER HOM COUPLERS & FEEDTHROUGHS					N°WB	
	CDD Number / Numéro CDD	Bld./ Lieu	Collaborator / Responsable	Signature	Date	Comments / Observations
Ceamic order number		112			_/_/20	
Visual inspection of ceramic discs		112			_/_/20	
Degreasing		107			//20	
Metalization / Mo/Mn 20-45 μm + Ni 5-10 μm					//20	
Visual inspection of ceramic discs		112			//20	
Metrology		AP			_/_/20	-
Machining Titanium flange (rough)		AP			//20	
Machining Copper part (finishing)		AP			//20	
Thermal stress relief treatment		107			//20	
Machining final Titanium flange (finishing)		AP			_/_/20	
Etching flange + tube before brazing		107			_/_/20	
Visual control before brazing		112			//20	
Vacuum brazing		112			//20	
Visual control after brazing		112			_/_/20	
Ceramic n° engraving		112			_/_/20	
Leak test		864			//20	
Sandblasting of ceramic		864			_/_/20	
Metrology of antenna's height		AP			_/_/20	
EB Welding of back pieces		AP			_/_/20	
Visual control						
Metrology		100			//20	
Inspection finale SY-RF		864			_/_/20	
Leak test / Contrôle d'étanchéité		864			_/_/20	

Quality & Documentation

- Strong commitment from WP4 teams to fulfil HL-LHC quality standards

 MTF, EDMS, Non-Conformities Reports... but also technical documentation
- 90+ assets to be followed-up, from materials traceability to all inspections and controls up to last steps. **Challenging but of paramount importance!**

S. Barrière, CERN

14th HL-LHC Collaboration Meeting - 09/10/2024