

WP12 Contribution Vacuum preparations for collaborations

G.Bregliozzi & F.Silvagni Contribution from B.Henrist, P.C.Pinto. S.Fiotakis

WP12 Contribution – 14th Collaboration Meeting – 7-10 October - 2024

Outline

Plug-in modules:

Status of production, vacuum acceptance tests, assembly, and shipping preparation.

Beam screen & Cold Bore:

Plasma cleaning, a-C coating, vacuum acceptance tests, insertion procedure.

Extremity vacuum chambers & Ancillaries:

Status of production, vacuum acceptance tests, assembly.

	ltem	Needed	Spare	Produced	Fully assembled	Comments
	PIMs	60	6	28	19	All bellows delivered, PIMs manufacturing on going
ÍÍ	DRF inserts	60	6	30	19	Welding and assembly of remaining DRF will start in Q1-2025

PIMs assembly status

CRAB	DESTINATION	PIMs ASSEMBLED	TO BE ASSEMBLED
RFD	SPS (prototype)	6	-
RFD	CANADA 1st	3	3
DQW	UK 1st	6	-
DQW	CERN	4	2

- PIMs assembly for 2 cryomodules completed (first cryomodule UK and SPS prototype).
- PIMs assembly for 2 cryomodules ongoing (first cryomodule Canada and DQW CERN) waiting for feedback on cleaning capability from Canada.
- PIMs for the remaining 7 cryomodules to be assembled.

PIMs: DRF inserts vacuum acceptance test

Vacuum Acceptance Test on DRF inserts after standard CERN cleaning procedure for UHV application.

PIMs assembly an example

Fix the bellow to the DRF with the screws inside

Final Status & Transport

Assembled PIMs are shipped to UK and Canada in AI boxes with foam. PIM bellows are protected by

Al foil, bubble wrap plastic and st. steel sheet.

-LHC PROJECT

	number	
UK 1	3132909	DQW
Canada 1	3132914	RFD

PIMs Assembled ready for installation: 27%

WP12 Contribution – 14th Collaboration Meeting – 7-10 October - 2024

Plasma Cleaning: How?

Oxygen plasma to remove carbon and hydrocarbon contaminations, but not dust (inorganic).

Plasma Cleaning: How?

Remote plasma source

Plasma

GV10 Asher from Ibss Inc. (13 MHz, 25 ~ 300 W, from 3x10⁻³ ~10⁻¹ mbar)

- ✓ Low energy ions (<100 eV)
- ✓ Simplicity
- × High inhomogeneous plasma distribution
- × Lower efficiency

Cold bore cleaning by oxygen plasma etching

- Generation of a plasma in an external source then injected in the cold bore.
- The lower energy of the ions (< 100 eV) produced generating the plasma inside the cold bore doesn't cause sputtering of the cold bore surface.
- The cleaning effect is seen by comparing the spectra before and after cleaning. (the cold bore was dirty)
- Procedure in EDMS n° 3126461 v.2

Beam screen: production status and a-C coating: Completed

Component	Qty CERN (SPS&D QW)	Qty Canad a	Qty UK	Qty Spare	Asset	aC coated
RFD Circular beam screen + cooling tubes + end connections VSSC	2	10	-	3	HCVSSCA001	12
DQW Circular beam screen + cooling tubes + end connections VSSC	2	-	8	5	HCVSSCA031	10

Beam screen: aC coating

a-C coating procedure on EDMS n° 3036208.

- Argon plasma cleaning, surface preparation before coating
- a-C coating
- Final RGA performed after every coating, reports available in EDMS folder: CERN-0000249963

Amorphous carbon coating in the beam screens for the circulating beam in the cryomodules for the CRAB cavities: production <u>completed | High Luminosity LHC Project (cern.ch)</u>

Beam screen: insertion in the cold bore

Procedure available in EDMS: 3129282 v.1.

The insertion is done essentially in 2 steps:

- Centre the beam screen on the diamond flange side by regulating its adjustable rings.
- Centre the beam screen on the other side installing two half-moon rings.

Beam screen: insertion in the cold bore

Centering the diamond flange:

- Remove the beam screen from the transport box and place it on the V support.
- Tight/Untight the adjusting pins and try to insert the beam screen, then repeat regulating the adjustable pins till the diamond flange is completely in contact and the beam screen can't move anymore.

Beam screen: insertion in the cold bore

Centering the beam screen on the other flange:

- Insert the half-moon rings'
- Fix them with a maximum torque of 1.5Nm

Extremity vacuum chambers (EVC)

Extremity vacuum chambers are assembly with instrumentation and connect each the sector valve with the crab cryomodule

ltem	Needed	Spare	Produced	Comments
Ext. Vac. Ch	40	4	44	8 shipped for cryomodule assembly (RFD prototype and DQW 1 UK)

EVC: production status: Completed

Extremity VC have been fully produced (RF inserts and st.steel chamber), assembly is on going.

Component	Asset	Total	% assembled
Extremity vacuum chamber for instrumentation	HCVMACAA_T001	44	50%

Extremity VC assembly

EVC: vacuum acceptance test

Three vacuum acceptance test have been performed:

- Acceptance test RF shield
- Acceptance test vacuum chambers
- Leak test vacuum chambers and ancillaries

Reports attached to asset code HCVMACAA_T001

EVC: vacuum acceptance test

ltem	Total Qty	Completely tested		
Extremity VC	38	18		
DRF shield	38	38		

EVC: Ancillaries

The assembly of the extremity vacuum chamber includes ancillaries and instrumentation

EVC: Ancillaries status

The assembly of the extremity vacuum chamber includes ancillaries and instrumentation. In-house contribution:

Component	Reference	Needed	Spare	In stock
Vacuum Gauge Manifold (1)	LHCVTFGC0001	11	2	19
Vacuum Gauge Manifold (2)	LHCVTFGA0001	11	2	19
VTD- Tee rot. Flange DN40-16CF	Pfeiffer Vac. 420RTR040- 16	10	1	15
VTD-Tee rot flange DN40CF	Pfeiffer Vac. 420RTS040	10	1	15

EVC: Ancillaries status

In-kind contribution:

Component	Reference	Needed	Spare	Purchased by CERN
Sector valve VVGSC DN80	VAT 47238-XE74-ANV1	40	4	40/40
VGPB- Cold cathode gauge	Pfeiffer Vac. IKR070 (PTR20 502)	60	6	36/60*
Non return valve (with rupture disk)	LHCVV0040	20	2	20/20
VGRB Pirani gauge DN16 CF-F	Pfeiffer TR018 (PT R15 011)	20	2	12/20*
VVFMD003- Angle valve T shape	VAT: 54132-GE02_AAY1	20	2	2/20*
lon pump	Sputter Ion – plus starcell 20	20	2	12/20*

* UK-STFC purchased those equipment on his own

Final transport

EVC and Ancillaries are shipped to the UK and Canada in boxes with foam. EVCs are shipped in two per box, ancillaries are shipped with two foam, depending on the beamline, but in the same box. Like PIMs also the EVC come with a traveler.

Summary

Plug-in modules:

- Under production and assembly.
- First PIMs shipped to collaboration.

Beam screen production & a-C coating: Completed

Cold Bore Plasma Cleaning:

- Procedure prepared.
- Possibility to see the system next week in CERN

Extremity vacuum chambers & Ancillaries:

Production finalized, vacuum acceptance tests, leak test and assembly ongoing.

