

RF Power Limitations Studies and Start-of-ramp Losses 14th HL-LHC Collaboration Meeting, Genoa, Italy

Birk Emil Karlsen-Bæck, R. Calaga, N. Gallou, I. Karpov, C. Marrelli, S. Morales, B. Salvachua, H. Timko, M. Zampetakis

Acknowledgements: shift crews in the LHC and injectors

10th October 2024

Outline

Calibration campaign

- Loaded quality factor measurements
- Implementations of RF voltage calibration

Operational experience with BCMS and standard beam

- Bunch length evolution
- Start-of-ramp losses
- High-intensity MDs in 2023 and 2024
 - Measurements of the capture of 2.3 x 10¹¹ p/b

Shown at the Last Year

Summary of expectations

Global analysis [6]

- Managed to capture 2.0x10¹¹ p/b with up to 7 MV
- Several improvements have been implemented over 2022-2023
 - Pre-detuning removes the limitations from injection transients; focus now on peak power in steady state
 - Continuous operational optimisation of SPS-LHC energy matching lowers blow-up at injection
 - Operation with short bunches at 1.6x10¹¹ p/b allows to capture with 5 MV
- Calibration measurements ongoing to verify margins in voltage and peak power
 - Voltage-based calibration shows a lack in voltage/power for 4/16 RF lines
- Projected HL-LHC peak power in the fully optimised (simulated) case is 330-340 kW
 - Even with high-efficiency klystrons, will need to find a way to lower the figures

Next steps

- Year-end shutdown: implement the corrections from the beam-based voltage calibration
- 2024: repeat calibration measurements w/ and w/o beam
- Try reducing operational capture voltage to probe margins
- Prepare continuous adjustment of Q_L at injection

[6] H. Timko et al.: 'Advances on LHC RF power limitation studies at injection', Proc. HB'23 workshop, CERN, Geneva, Switzerland, 2023.

H. Timko LHC Longitudinal Studies

14

Calibration Campaign for the LHC RF System

Loaded quality factor measurements

- Performed voltage decay measurements during hardware commissioning
- Performed measurement with beam during beam commissioning

Confirmation of the voltage calibration

- Calibration measurement done in 2022 (3% precision)
- Measurements were taken, but need to be analysed

Measured Q_L via voltage decay when setting the setpoint Q_L to 20k

Bunch Length and Start-of-ramp Losses in 2024

Off-momentum particles drifting around the ring

At capture

- Transient beam loading
- Injection errors in energy and phase

During flat bottom

- RF noise
- Intra-beam scattering
- Kicks from consecutive injections

NB! Not a sum of the different contributions because of the ADT cleaning

Standard Beam and the BCMS Beam in 2024

Increase in RF voltage from 5 MV to 5.5 MV giving shorter bunches

at the start-of-ramp they are approximately as long as the standard beam

Standard Beam and the BCMS Beam in 2024

BCMS bunch length scaled from 5.5 MV to 5 MV (assuming constant emittance)

If the voltage increase is considered, the emittance from the SPS is approximately same at injection. However, BCMS emittance is consistently larger at the start of the ramp.

Accounting for the extra batches and longer flat bottom

Intra-beam scattering (assuming gaussian bunches)

$$\tau = \tau_0 e^{\frac{\iota}{2T_z}}, \qquad T_z = T_z(\tau, \delta, \varepsilon_x, \varepsilon_y)$$

Diffusion due to RF noise (short bunch approximation)

$$\tau_f = \tau_0 \sqrt{1 + \frac{t}{\tau_0} \Omega_{s0}^2 P(\Omega_{s0})}$$

IBS

RF Noise

- Example:
 - STD: 35 min. at flat bottom
 - BCMS: 45 min. at flat bottom
- Note:
 - We do not know the exact proportions of the two
 - Not exact numbers, e.g. the bunches are not gaussian and short bunch approximation

*Using the transverse parameters from: S. Kostoglou et al. "BCMS vs Standard", LBOC presentation, June 4th 2024

35%

16%

39%

17%

Analysis looking at off-position particles

Total amount of particles not in the correct RF buckets but still drifting around the ring

Fast BCT from injection to the ramp

- Bunch intensity reduction
- Sum of intensity lost out of the ring and particles not
 in the correct bunch slot

- DC BCT from batch injection to the ramp
 - Gives total intensity injected into the LHC
 - The DC BCT measurement at the start of the ramp
- Combining this one can estimate the number of particles off position

Correlation between off-position particles and losses at the start of the ramp

BCMS has higher off-position beam as well as start-of-ramp losses

We get slightly higher start-of-ramp losses for the same amount of off-position beam with BCMS Two populations of losses

The slope of the diagonal is higher in 2024 compared to 2023 and 2022 data

High-Intensity MDs in 2023 and 2024

• In 2023 – 72-bunch trains, standard beam

- Captured 2.0 x 10^{11} p/b with 5 MV and 7 MV
- In 2024 2x48-bunch trains, BCMS beam
 - Captured 2.0 x 10¹¹ p/b with 7 MV and accelerated it
 - Captured 2.3 x 10¹¹ p/b with 6.5 MV without one-turn feedback

Year	Intensity	SPS bunch length	SPS Voltage 200 MHz	SPS Voltage 800 MHz	LHC Voltage	LHC bunch length	Simulated peak power at optimum <i>Q_L</i>
2023	2.0 x 10 ¹¹ p/b	1.55 ns	9.4 MV	1.69 MV	5 MV	1.32 ns	178 kW
2023	2.0 x 10 ¹¹ p/b	1.55 ns	9.4 MV	1.69 MV	7 MV	1.20 ns	263 kW
2024	2.0 x 10 ¹¹ p/b	1.50 ns	8.5 MV	1.445 MV	7 MV	1.11 ns	269 kW
2024	2.3 x 10 ¹¹ p/b	1.60 ns	8.5 MV	1.53 MV	6.5 MV	1.19 ns	283 kW (without OTFB: 238 kW)

Bunch Length Delivered from the SPS at HL Intensity

Average bunch length: (1.55 ± 0.06) ns, 10% peak-to-peak

Average bunch length: (1.60 ± 0.05) ns, 16% peak-to-peak

Bunch intensities Delivered from the SPS at HL Intensity

72b with 2.0 x 10¹¹ p/b 2.2 2.1 $N_p \ [p \times 10^{11}]$ 2.0 1.8 1.7 10 20 40 50 60 70 30 Bunch number [-]

Average bunch intensity: $1.93 \times 10^{11} \text{ p/b} \pm 4.8\%$, 9% pk-to-pk

Average bunch intensity: 2.31 x 10^{11} p/b ± 5.7%, 27% pk-to-pk

Direct Measurements of Start-of-ramp Losses in MDs at 2.0 x 10¹¹ p/b

- Two ramps were performed 12b + 48b + 3 x 96b
 - Waited 10 minutes between each 96-bunch injection
 - First with good phase and energy matching
 - Second with 0 deg., 0 deg., 40 deg., -40 deg., and 0 deg.
- First ramp
 - Beam 1: 0.47 x $10^{11}\,p \rightarrow 0.016$ % threshold to dump
 - Beam 2: 0.45 x $10^{11} \text{ p} \rightarrow 0.017 \text{ \%}$ threshold to dump
- Second ramp
 - Beam 1: 0.78 x $10^{11} \, p \rightarrow 0.024$ % threshold to dump
 - Beam 2: 0.65 x 10^{11} p \rightarrow 0.032 % threshold to dump

Almost factor two between the two ramps

Cannot be directly compared to the result based on off-position beam due to:

- 1. The amount of bunches
- 2. Beam-phase loop is still efficient

Predicted Losses at the Start of the Ramp from Offposition Beam

- From 2023 at 1.93 x 10¹¹ p/b 72-bunch trains (300 bunches)
- From 2024 at 1.97 x 10¹¹ p/b 48-bunch trains (348 bunches)
- From 2024 at 2.31 x 10¹¹ p/b 48-bunch trains (348 bunches)
 Beam 1

Based on BLM thresholds in 2023, but they are being revised

Year	Beam type	Bunch Intensity	RF Voltage	Off-position beam	Off-position beam Scaled to 2748 bunches*	Estimated Start-of- ramp Losses	Ratio to dump
2023	Standard	1.93 x 10 ¹¹ p/b	5 MV	10.08 x 10 ¹¹ p	19.28 x 10 ¹¹ p	(8.2 ± 1.3) x 10 ¹¹ p	(31.2 ± 4.9) %
2023	Standard	1.93 x 10 ¹¹ p/b	7 MV	2.08 x 10 ¹¹ p	8.93 x 10 ¹¹ p	(4.03 ± 0.76) x 10 ¹¹ p	(15.3 ± 2.9) %
2024	BCMS	1.97 x 10 ¹¹ p/b	7 MV	0.59 x 10 ¹¹ p	9.46 x 10 ¹¹ p	(8.1 ± 1.5) x 10 ¹¹ p	(30.8 ± 5.7) %
2024**	BCMS	1.97 x 10 ¹¹ p/b	7 MV	1.07 x 10 ¹¹ p	26.73 x 10 ¹¹ p	(22 ± 2.9) x 10 ¹¹ p	(84.0 ± 11.0) %
2024***	BCMS	2.31 x 10 ¹¹ p/b	6.5 MV	5.88 x 10 ¹¹ p	21.97 x 10 ¹¹ p	(18.2 ± 2.4) x 10 ¹¹ p	(69. ± 9.1) %

*Also scaled for an average time at flat bottom of 30 minutes **With significant injection errors (40 degrees) ***With the OTFB open, note a few bunches saturated FBCT

Predicted Losses at the Start of the Ramp from Offposition Beam

- From 2023 at 1.93 x 10¹¹ p/b 72-bunch trains (300 bunches)
- From 2024 at 1.97 x 10¹¹ p/b 48-bunch trains (348 bunches)
- From 2024 at 2.31 x 10¹¹ p/b 48-bunch trains (348 bunches)
 Beam 2

Based on BLM thresholds in 2023, but they are being revised

Year	Beam type	Bunch Intensity	RF Voltage	Off-position beam	Off-position beam Scaled to 2748 bunches*	Estimated Start-of- ramp Losses	Ratio to dump
2023	Standard	1.93 x 10 ¹¹ p/b	5 MV	12.15 x 10 ¹¹ p	29.99 x 10 ¹¹ p	(11.4 ± 1.3) x 10 ¹¹ p	(81.3 ± 9.3) %
2023	Standard	1.93 x 10 ¹¹ p/b	7 MV	2.62 x 10 ¹¹ p	10.54 x 10 ¹¹ p	(4.12 ± 0.59) x 10 ¹¹ p	(29.4 ± 4.2) %
2024	BCMS	1.97 x 10 ¹¹ p/b	7 MV	0.26 x 10 ¹¹ p	1.40 x 10 ¹¹ p	(2.06 ± 0.93) x 10 ¹¹ p	(14.7 ± 6.6) %
2024**	BCMS	1.97 x 10 ¹¹ p/b	7 MV	1.02 x 10 ¹¹ p	16.48 x 10 ¹¹ p	(11.2 ± 1.4) x 10 ¹¹ p	(79.9 ± 10.0) %
2024***	BCMS	2.31 x 10 ¹¹ p/b	6.5 MV	13.57 x 10 ¹¹ p	49.03 x 10 ¹¹ p	(30.8 ± 3.4) x 10 ¹¹ p	(220 ± 24) %

*Also scaled for an average time at flat bottom of 30 minutes

**With significant injection errors (40 degrees)

***With the OTFB open, note a few bunches saturated FBCT

Conclusions

Calibration of RF power

- Three different measurements of *Q_L* have been performed
- Voltage calibration implemented in the machine
- Voltage calibration confirmation to be analysed

• Operation in 2024 with BCMS

- Significantly more start-of-ramp losses
- More blow-up due to smaller transverse emittances
- More population off-momentum
- High-intensity MDs in 2023 and 2024
 - First capture of 2.3 x 10¹¹ p/b
 - NB! Without the OTFB (perhaps not viable for production fills for HL-LHC)
 - Direct measurement of start-of-ramp losses with 2.0 x 10¹¹ p/b
 - Off-position beam estimates suggest significant start-of-ramp losses for 2.3 x 10¹¹ p/b

Fit Results of the Off-position Beam Versus Start-of-ramp Losses in 2022

Fit Results of the Off-position Beam Versus Start-of-ramp Losses in 2023

Fit Results of the Off-position Beam Versus Start-of-ramp Losses in 2024

Longitudinal Emittances Delivered from the SPS 2 x 48b with 2.3 x 10¹¹ p/b at HL Intensity

72b with 2.0 x 10¹¹ p/b

Average bunch length: (0.51 ± 0.03) eVs, peak-to-peak 16%

Average emittance: (0.49 ± 0.03) eVs, peak-to-peak 25%

Bunch Length Delivered from the SPS at HL Intensity in the LHC

72b with 2.0 x 10¹¹ p/b 7 MV

Average bunch length: (1.20 ± 0.04) ns, 9% peak-to-peak

Average bunch length: (1.19 ± 0.04) ns, 15% peak-to-peak

Bunch Length Delivered from the SPS at HL Intensity in the LHC

72b with 2.0 x 10¹¹ p/b 5 MV

Average bunch length: (1.32 ± 0.05) ns, 10% peak-to-peak

Average bunch length: (1.19 ± 0.04) ns, 15% peak-to-peak

home.cern