

Damage of superconducting sample coils due to beam impact

David Gancarcik, Cedric Hernalsteens, Daniel Wollmann (TE-MPE-CB, WP7) and many more (see acknowledgements)

Motivation of the studies on sc. magnet components

Ultra-fast failures in HL-LHC: Injection kicker failure case

- Will the magnets be permanently damaged?
- What are the damage mechanisms and limits of superconducting magnets due to high-intensity beam impact?
- Ongoing studies within WP7 in past decade

 (Nb_3Sn)

• Nb-Ti and Nb₃Sn strands and cables and coils, polyimide insulation (Nb-Ti), CTD101K epoxy

HILUMI

Experimental campaign

Different timescales (**hours-µs**), heating in furnace [1], discharge[2],

Experimental campaign

- Different timescales (hours-µs), heating in furnace [1], discharge[2], beam at RT [3]
- HRMT37 [4] 1st beam experiment at 4K, strands in copper sample holder
- Two main damage mechanisms in Nb₃Sn identified
 - Filament breaking caused by the excessive strain \rightarrow I_c degradation
 - Residual strain from the copper matrix $\rightarrow B_{c,2}$ degradation $\rightarrow I_c$ degradation

08.2014 04.2016 09.2016 12.2016 03.2017 08.2018 10.2022 14th HL-LHC Collaboration Meeting, Genoa (Italy), 10 October 2024

Experimental campaign

Sample racetrack coils

- Copper base Ø 48mm
- Nb-Ti sample coil:
 - Ø 0.825mm LHC dipole inner layer strand

Sample racetrack coils

- Copper base Ø 48mm
- Nb-Ti sample coil:
 - Ø 0.825mm LHC dipole inner layer strand
- Nb₃Sn sample coil:
 - Ø 0.85mm RRP HL-LHC triplet strand
 - Reacted with HL cycle (same as MQXF)
 - Impregnated with CTD101K epoxy
 - Equipped with G10 clamp

Sample racetrack coils

- Copper base Ø 48mm
- Nb-Ti sample coil:
 - Ø 0.825mm LHC dipole inner layer strand
- Nb₃Sn sample coil:
 - Ø 0.85mm RRP HL-LHC triplet strand
 - Reacted with HL cycle (same as MQXF)
 - Impregnated with CTD101K epoxy
 - Equipped with G10 clamp
- Coils were wound @ KIT, reacted @
 University of Geneva and impregnated @
 CERN polymer lab

Qualification of sample coils

- Ramping of current, quench detection
- Qualification performed for:
 - Nb-Ti samples @ self-field: show similar performance, reached
 94-98% of short-sample limit (built:15, used:8, qualified:5)
 - Nb₃Sn samples @ 7T ext. field: more training quenches, larger differences between quench current compared to Nb-Ti, reached 91-100% of short-sample limit (build:15, used:7, qualified:7)

Experiment setup for coils experiment

Three batches of five coils

- Batch 1 (Nb-Ti): qualified Nb-Ti
- Batch 2 (mixed): 2xNb₃Sn+3xNb-Ti
- Batch 3 (Nb₃Sn): qualified Nb₃Sn

Experiment setup for coils experiment

Three batches of five coils

- Batch 1 (Nb-Ti): qualified Nb-Ti
- Batch 2 (mixed): 2xNb₃Sn+3xNb-Ti
- Batch 3 (Nb₃Sn): qualified Nb₃Sn

Experiment setup for coils experiment

Three batches of five coils

- Batch 1 (Nb-Ti): qualified Nb-Ti
- Batch 2 (mixed): 2xNb₃Sn+3xNb-Ti
- Batch 3 (Nb₃Sn): qualified Nb₃Sn

14th HL-LHC Collaboration Meeting, Genoa (Italy), 10 October 2024

Experimental setup in HiRadMat tunnel

- Placed in **vacuum vessel** with cryogenic device → experiment conducted **at 4K**
- Horizontal and vertical movable stages to switch in between batches
- Beam-based alignment prior to high-intensity shots to validate the correct alignment

Post-irradiation I_c measurement (Nb-Ti coils)

- No permanent degradation in coil observed up to 910K
 - Consistent with previous findings → no new damage mechanism
- Temporary **memory loss** for hotspots above 710K
 - Strong de-training observed after the beam impact
 - Likely caused by tension in the winding from the beam heating
 - Tension is released during few first training quenches

Post-irradiation I_c measurement (Nb₃Sn coils)

- No permanent degradation observed up to 680K
- No additional memory loss after beam impact as compared to effect of thermal cycle

14th HL-LHC Collaboration Meeting, Genoa (Italy), 10 October 2024

Comparison between strand and coil experiment

- **No degradation** in coils **up to 680K** as opposed to degradation in strands above 460K
- Seems contradictory but looking at the transverse thermal gradient the coil results agree with the strands results → supported by the physics, as thermal gradient is more relevant for the strain in the strands / filaments
- Confirmed by comparing the maximum strain as derived from ANSYS simulations

Conclusion

- Extensive and successful experimental campaign has been conducted to identify the damage limits and mechanisms of superconducting magnet components due to direct beam impact.
- The results of the sample coil experiment are in agreement with the previous strand experiment
 - Nb-Ti: No permanent degradation of critical current if hot spot in coil up to 910K (up to 1130K in strand experiment)
 - Nb₃Sn: No permanent degradation for gradients up to 200K/mm or in maximum strain up to 2%
 - Coil experiment reveals **memory loss** for hotspots above **710K in Nb-Ti** coils
- Damage studies (simulations & experiments) are essential to identify the criticality of failure cases, to design protection methods and equipment and to specify interlock systems

Acknowledgments

- A. Bernhard, S. Bolton, M. Bonura, B. Bordini, L. Bortot, B. Bulat, E. Calvo, A. Cherif, B. Descargues, S. Clement, E. Effinger, M. Favre, N. Glamann, A. Grau, D. Jauregui, D. Kleiven, T. Koettig, K. Kulesz, M. Mentink, A. Liakopoulou, B. Lindstrom, M. Meyer, A. Monteuuis, A.-S. Mueller, Y. Nie, A. Oslandsbotn, V. Raginel, F. Rodriguez Mateos, R. Schmidt, D. Schoerling, J. Schubert, C. Scheuerlein, C. Senatore, J. Sestak, A. Siemko, P. Simon, K. Stachon, D. Tommasini, C. Urscheler, M. P. Vaananen, A. Verweij, A. Will
- Presented experiments and results are part of V. Raginel's and A. Will's PhD theses.
- Measurements of I_c, T_c, B_{c2}, Magn., were performed by the University of Geneva, who also provided strong support for the interpretation of the experimental results
- The Nb₃Sn sample coils have been impregnated at CERN's polymer lab.
- This work is supported by the High Luminosity LHC Project

