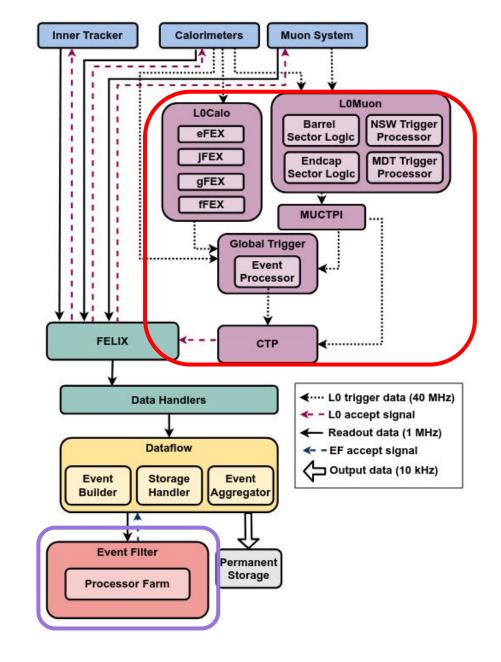
Optimal Real-Time Event Selection in the Global Trigger system

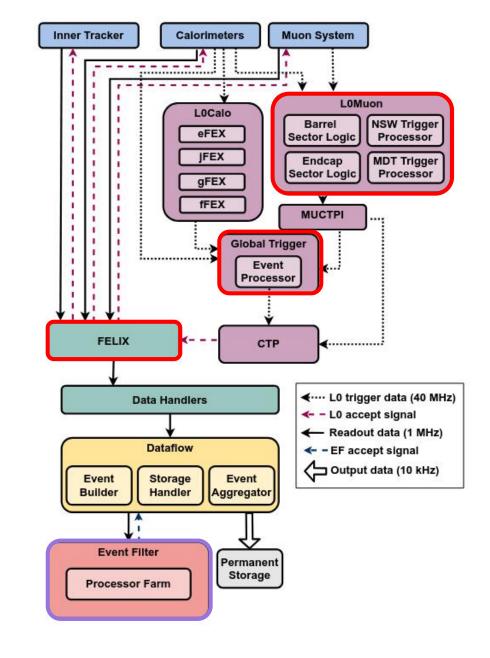
Group: D. Miller (Chicago), N. Konstantinidis (UCL) and I. Xiotidis (CERN) Meeting: Next Generation Triggers 1st Technical Workshop Date: 26-Nov-2024



Overview

- Introduction
 - ATLAS TDAQ and NGT project
 - Interactions with other WPs
 - Global Trigger
- WP2.1
 - Project overview
 - Framework work
 - Algorithm interfaces
 - Resource extraction
- Evaluation of new technologies
 - AMD AI Engines
 - Example implementations for comparisons (e/gamma BDT)
 - AIE in L0-Global
- Summary

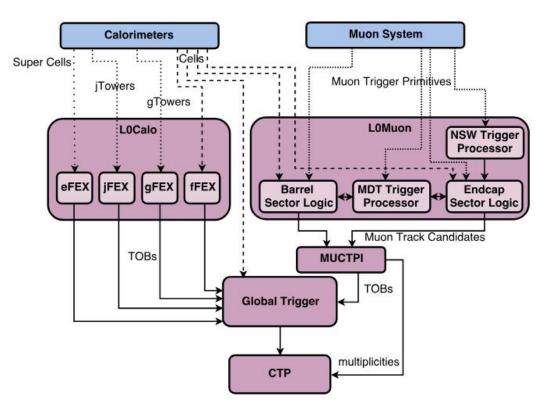
ATLAS NGT Introduction


- The ATLAS Trigger and Data Acquisition system for HL-LHC follows a dual approach on event selection
 - Hardware Trigger (Level-0): Quickly analyses the calorimeter and muon system data providing a 40:1 rate reduction
 - **Software Trigger** (EventFilter): Analyses L0-Accepted data and adds also tracker information for a further 100x rate reduction

ATLAS NGT Introduction

- The ATLAS Trigger and Data Acquisition system for HL-LHC follows a dual approach on event selection
 - Hardware Trigger (Level-0): Quickly analyses the calorimeter and muon system data providing a 40:1 rate reduction
 - Software Trigger (EventFilter): Analyses L0-Accepted data and adds also tracker information for a further 100x rate reduction
- The Next Generation Trigger project has multiple work packages exploring innovative trigger solutions, with a natural split following the ATLAS TDAQ:
 - Custom Electronics: <u>WP2.1</u>, WP2.2 and WP2.3
 - Processor Farm: WP2.4, WP2.5, WP2.6 and WP2.7
- All packages in communication for efficient result extraction

NextGen Trigger interactions


- WP2.1 naturally in contact with the ATLAS WPs
- Many developemnts in WP1 and WP3 are similar to our aims
 - WP1.1-1.3
 - WP3.5-3.7
- What would be the optimal way to talk to each other?
 - Mainly avoid re-inventing the wheel or work in parallel on same topics

Introduction to Global Trigger

- WP2.1 focuses on implementations **within** the context of the ATLAS Global Trigger (L0-Global)
- L0-Global receives data from the calorimeter and muon systems
 - 50Tbps of data streamed through
 - Tight latency budget of $10 \mu s$
- Offline-like algorithms implemented in firmware for event selection
- Due to its central position, L0-Global is critical system with two main constraints
 - Number of incoming links (from all the preprocessors)
 - FPGA resources due to algorithm complexity
- Constraints drive decisions on FPGA selection: VP1802 (largest AMD FPGA on the market)

WP2.1 Fellow

WP2.1 Pls

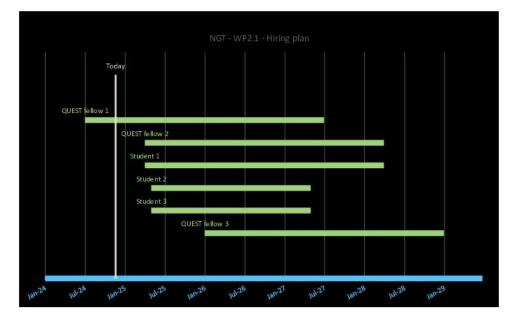
Introduction to WP2.1

- **Main goal**: Exploration of novel machine learning reconstruction within the ATLAS Global Trigger
- WP2.1 team:
 - Project Leads: D. Miller and N. Konstantinidis
 - Fellows: I. Xiotidis

I.Xiotidis

David Miller

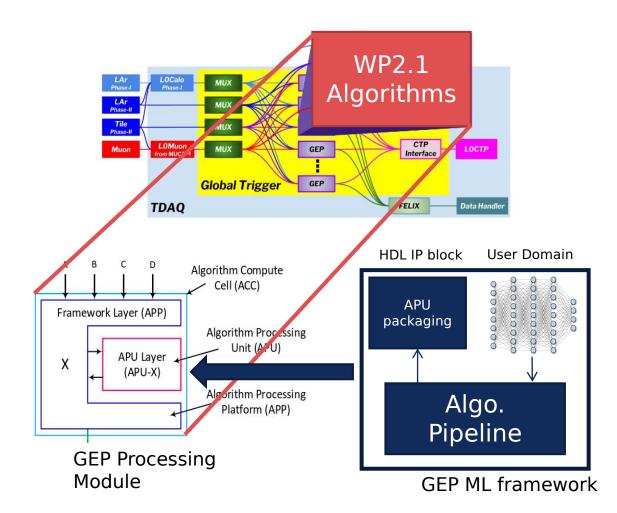
Nikolaos Konstantinidis



WP2.1 Pls

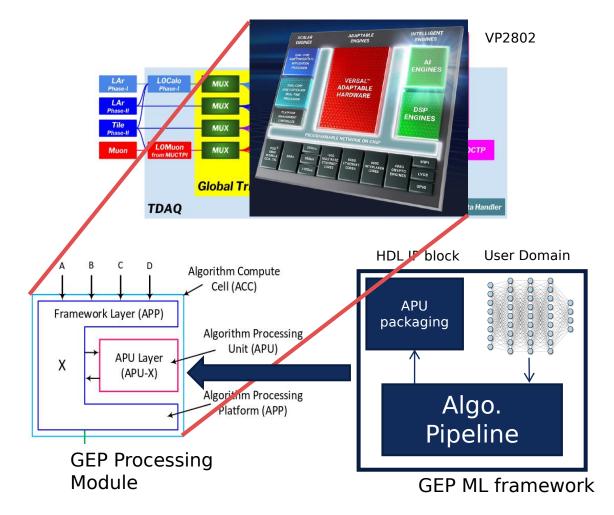
Introduction to WP2.1

- **Main goal**: Exploration of novel machine learning reconstruction within the ATLAS Global Trigger
- WP2.1 team:
 - Project Leads: D. Miller and N. Konstantinidis
 - Fellows: I. Xiotidis
 - 2025: 3x PhD students and 1x Fellow
 - Total: 3x Fellows, 3x PhD (a lot of exciting opportunities!)



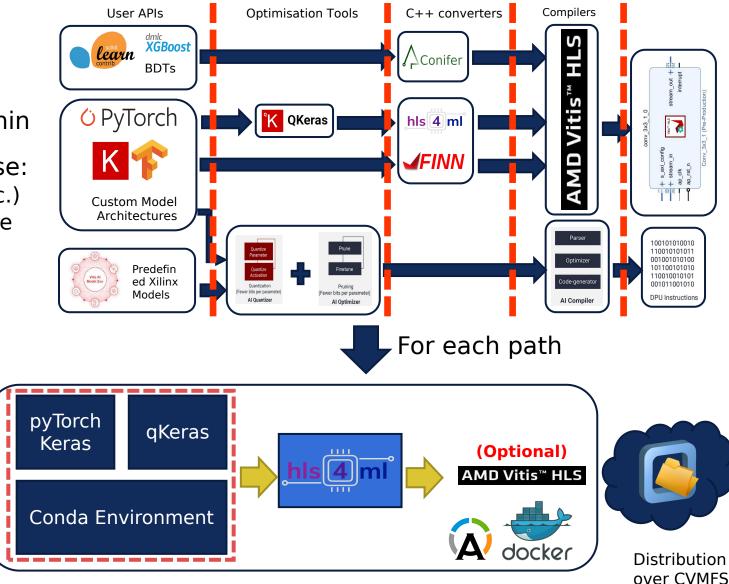
Hiring Schedule

Introduction to WP2.1


- **Main goal**: Exploration of novel machine learning reconstruction within the ATLAS Global Trigger
- WP2.1 team:
 - Project Leads: D. Miller and N. Konstantinidis
 - Fellows: I. Xiotidis
 - 2025: 3x PhD students and 1x Fellow
 - Total: 3x Fellows, 3x PhD (a lot of exciting opportunities!)
- Three main components within WP2.1:
 - Develop a common framework for ML optimisation for FPGA development
 - Explore novel ML algorithms for L0-Global

Introduction to WP2.1

- **Main goal**: Exploration of novel machine learning reconstruction within the ATLAS Global Trigger
- WP2.1 team:
 - Project Leads: D. Miller and N. Konstantinidis
 - Fellows: I. Xiotidis
 - 2025: 3x PhD students and 1x Fellow
 - Total: 3x Fellows, 3x PhD (a lot of exciting opportunities!)
- Three main components within WP2.1:
 - Develop a common framework for ML optimisation for FPGA development
 - Explore novel ML algorithms for L0-Global
 - Evaluate of new industry technologies

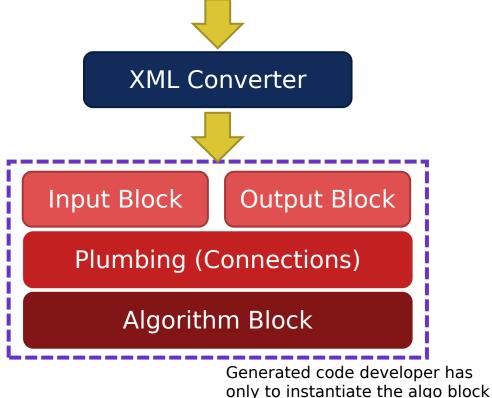


WP2.1 framework

- WP2.1 work aims to integrate within the Global Event Processor (GEP) where the following constraints arise:
 - FPGA type (e.g. Versal Premium, etc.)
 - Interface between different firmware blocks (APU)
 - Allowed resources per algorithm (optimisation)
 - Latency budget (environmental constraints)
- Integrating ML in those conditions requires unified framework
- First step was to survey existing software tools for ML in FPGAs
 - All pipelines wrapped in Apptainer/Docker for developers

26/11/24

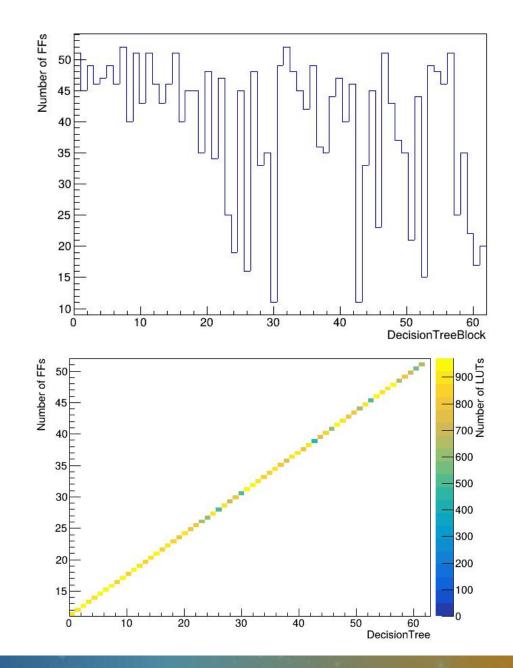
• Shareable via CVMFS



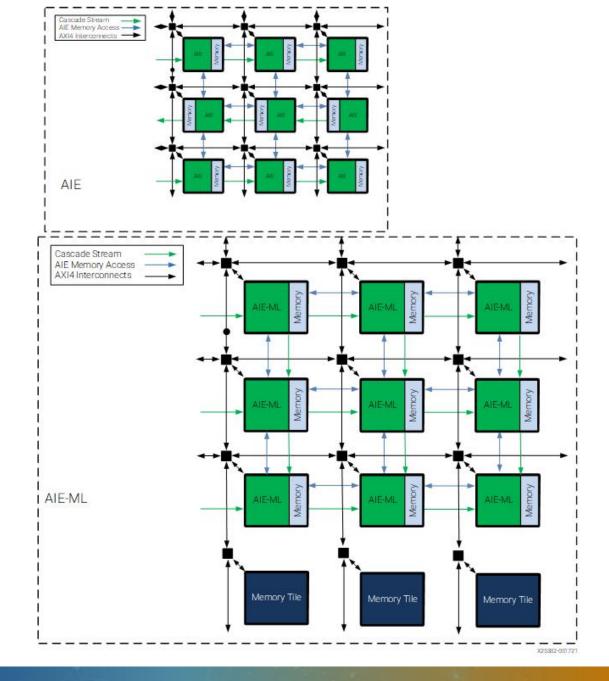
WP2.1 - I. Xiotidis

Algorithm interfaces

- Developed algorithms face challenges when integrated into frameworks
 - Interfaces might not be the same
 - Resource utilisation/timing closure might be affected
- Getting the algorithm into the framework as quickly as possible crucial for estimating overall performance
- GEP has a standardised interface towards the algorithms (APP), each algorithm (APU) should follow that
 - Getting the correct interface allows for quicker validation with realistic conditions!
- Dedicated library within WP2.1 providing interfaces to framework and necessary plumbing
 - XML-based package
 - Developer/Framework engineer provide configuration files for their respective counterpart
 - Status: In-Development

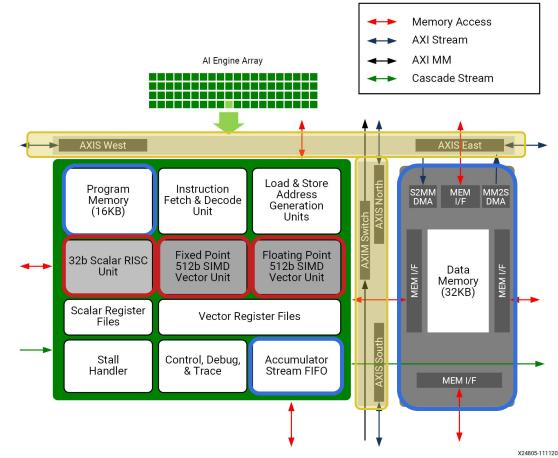


APU xml

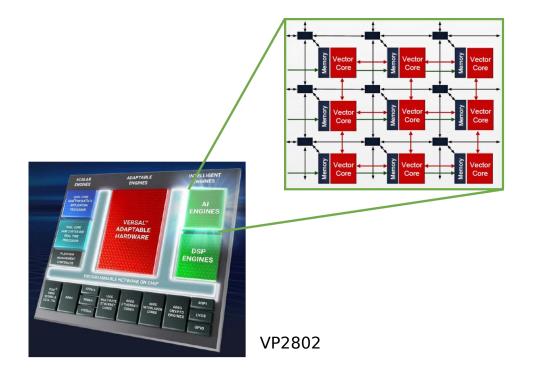

Resource extraction - physics perfromance

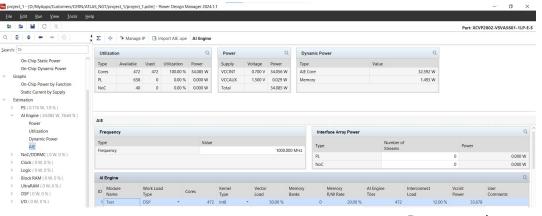
- Critical to the task would be to be able to extract performance metrics
 - Parsing all types of the Vitis Unified Platform reports
 - Allows for quick cross resource plotting (e.g. LUTs vs latency, latency vs max clock frequency per RTL block, etc.)
- Included in the framework development
 - Currently supporting Vitis HLS, Vitis AIE, Vitis AI
 - Support to be added on extracting physics performance from ML software tools (e.g. Keras, pyTorch)
 - Part of the containers for ML algorithm development
 - Growing number of plotting scripts and implementing unified Command-Line Interface (CLI) for cross-platform comparisons (e.g. HLS vs AIE)
 - Status: In-Development

Evaluation of new technologies


- New technology in the AMD ecosystem focuses on dedicated vector processors (AI-Engines)
 - Optimised for Digital Signal Processing and Machine Learning
 - Two flavours on the market, AIE and AIE-ML

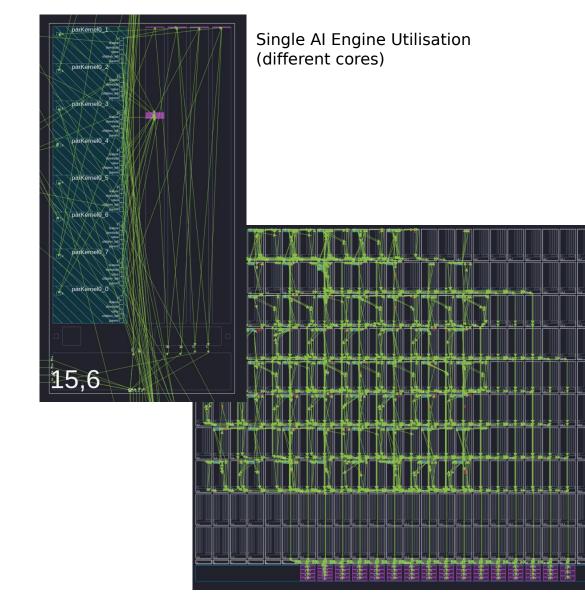
Evaluation of new technologies


- New technology in the AMD ecosystem focuses on dedicated vector processors (Al-Engines)
 - Optimised for Digital Signal Processing and Machine Learning
 - Two flavours on the market, AIE and AIE-ML
- Both AIE versions contain the following parts
 - Scalar processor (reduced instructions)
 - Vector processor
 - Memory
 - Interface (to neighbouring AIE, FPGA, Network on Chip)
- Allow for data-level parallelisation and instruction level!
 - Multiple optimisation paths for developers many of them still to be done by hand



AI-Engines in Global

- L0-Global deals with the ATLAS hardware trigger constraints by deploying a single hardware board called Global Common Module (GCM)
 - The final system will contain O(50) GCMs processing around 50Tbps
 - Includes large VP1802 FPGAs to deal with the I/O demands and the feature extraction algorithm implementations
- Recently AMD released VP2802, pin-compatible to VP1802 but also contains the AI-Engines
- Demonstrating that the AIEs can provide a significant advantage within the constraints of the L0-Trigger is a unique opportunity
 - Discussing with AMD to purchase a VP2802 for a full slice test evaluation of the WP2.1 algorithms
- One of the first hardware boards with AIE at CERN!


Power estimates from AlEngines

WP2.1 - I. Xiotidis

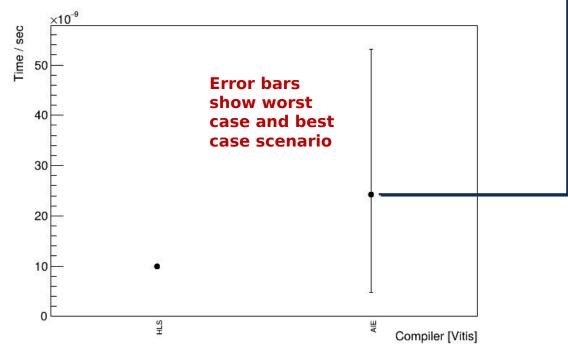
AIE programming

- Two methods for configuring the AIE
 - Vitis AI: Constrains the FPGA resources in using a dedicated IP block
 - Vitis AIE Compiler: Compiles C++ (with enhancements) for the AIE processors (Scalar, Vector)

Al Engine array

WP2.1 - I. Xiotidis

AIE programming


- Two methods for configuring the AIE
 - Vitis AI: Constrains the FPGA resources in using a dedicated IP block
 - Vitis AIE Compiler: Compiles C++ (with enhancements) for the AIE processors (Scalar, Vector)
- For the WP2.1 example we used a BDT designed and optimised for e/gamma identification
 - As Vitis AI doesn't support BDTs and we didn't want to use the IP, we focused on the AIE Compiler option
 - Choise of the BDT mainly to minimise uncertainties and allowing us to familirise with the compiler
- BDT implemented already in HLS which allowed for comparisons
 - Inputs: 11b integers, 11b fixed point features
 - Output: 11b fixed point
 - Trees: 63x, with depth 5

Preliminary AIE results

- Implementation process
 - 1. Extract HLS code from Conifer
 - 2. Modify for using the AIE compiler
 - 3. Use the scalar processor only (not expecting to give an improvement but allows for functional tests)
 - 4. Utilise instruction and data level parallelisation
 - 5. Optimise data transfers
- The scalar processor pass yieldied a **10µs** latency
- Walking through steps 3-5 allowed for an average
 25ns decision per tree
 - Using 32b integers, floats everywhere: 10% physics performance increase
- The BDT might not be the best use case as its computationally lightweight
 - Next attempt focusing on getting a CNN implemented (using HLS4ML)
 - The study will teach us also how to automate (if possible)

Important: Function only latency (evaluated over 10x e/gamma obects) work is required for "proper" interfacing

HLS: Implemented in Vitis HLS **AIE**: Implemented with Vitis AIE Compiler

Summary

- The NextGeneration Trigger project is a unique R&D opportunity aiming to amplify the physics reach of ATLAS (and other future HEP experiments)
- Within ATLAS, the L0-Global is a critical system responsible for reconstructing in real time all the ATLAS events
- Implementing ML-based algorithms within the context of Global can further enhance the physics reach
 - WP2.1 can assist significantly
- WP2.1 completed hiring and necessary hardware procurement for 2024
 - Hiring for 2025 on-going (Doctoral student selection under way, 2nd Fellow post ad out soon!)
 - Hardware procurement for standalone ML training and firmware integration completed
 - GCM with VP2802 in discussion with AMD for final quote to move into production
- Framework for algorithm optimisation in progress
 - First libraries/tools have already prototype versions and will move into production level when more person power arrives
- Evaluation of new technologies advances
 - BDT results show promising latency and pointed out key areas to be taken care of
 - CNN example progressing with results expected within the next month

