
Task 1.3: Hardware-aware
AI optimization

Roope Niemi, Vladimir Loncar (lead), Michael Kagan (deputy 
lead), Maurizio Pierini (deputy lead), Dimitrios Danopoulos, 

Sebastian Dittmeier, Lorenzo Moneta, Chang Sun

Next Generation Triggers 1st Technical Workshop
25-27 November, 2024



11/25/2024 2

Activities in Next Generation Triggers and T1.3



11/25/2024 3

Introduction

- To improve pattern recognition and keep up with increasing data rates in 
the trigger, aim to put ML models on hardware

- Hardware has limited resources, models should be compressed before 
implementation on hardware

- Much of model compression happens during training, before moving 
model to target hardware

- Many compression methods exist, but there is no common framework, 
no common implementation, no easy way to test and compare

- Our aim is to make it easier to use, study and test different model 
compression methods for NGT and broader communities



11/25/2024 4

Goal and scope

- Goal: 
- Collect various compression methods
- Develop common interface to users 
- Make it easy for users to adopt these methods for their models
- Make it easy for users to test and compare methods

- Scope:
- Develop software libraries and tools for hardware-aware training of neural 

networks (pruning, quantization etc.)
- Develop general training loop that can be used with compression methods



11/25/2024 5

Deliverables and milestones

- Internal milestones:
- Flexibility when choosing compression 

algorithms and target hardware

Description Year

MLonFPGA community workshop, to 
identify needs from ATLAS and CMS on 
WP 2 and 3 as inputs to WP 1.2 and 1.3

1

WP1.3 software release 1 with 
open-access documentation

3

WP1.3 software release 2 with 
open-access documentation

4

WP1.3 software release 3 with 
open-access documentation

5



11/25/2024 6

Pruning

- Not all weights in a neural network are necessary

- Prune weights by setting them to 0. In general, this 
means fewer computations, resulting in reduced 
memory and resource usage

- Specifically for FPGAs, multiplications by 0 can be 
skipped

- Similar benefits for CPUs and GPUs

- Many ways to decide which weights to prune

- Granularity:
- Prune single weights or groups of weights at once



11/25/2024 7

Quantization

- Instead of the usual 32-bit floating point 
numbers, use fewer bits for weights and 
computations:
- fewer bits means lower resource usage, 

which leaves space for other things, such 
as higher parallelization, or a bigger model

- Bit reduction introduces error, affecting 
accuracy. Quantize during training to allow 
ML model to keep accuracy high.



11/25/2024 8

The progress so far

- First focus of work: defining common interface and implementing pruning
- Common interface: 

- YAML based configuration for pruning and training hyperparameters
- User supplies the YAML configuration 
- Pruning layers are added automatically

- Pruning:
- Identified a set of state-of-the-art methods
- Selected promising subset to implement
- 4 algorithms implemented so far, 
- Include default YAML configurations for easy use

- Testing on common models such as ResNet and ParT
- Very interested to get more models from WP2 and WP3



11/25/2024 9

Adding pruning layers to model

- Pruning layers defined by YAML file:
- Which pruning method to use
- Pruning hyperparameters



11/25/2024 10

Training pruned models

- Different pruning methods have 
different training steps:

- Standard, multiple rounds, 
pre-training, fine-tuning steps

- Training configuration defined by a 
YAML file



11/25/2024 11

Example results

ResNet20, dataset CIFAR10
Pruning method: CS
Weights pruned: 87.55%



11/25/2024 12

Example results

ResNet20, dataset CIFAR10
Pruning method: PDP
Weights pruned: 90%



11/25/2024 13

Example results

ParT
Pruning method: PDP
Weights pruned: 81.75%



11/25/2024 14

Next steps

- Short term:
- Test models from the community
- Polish the library for release
- Prepare documentation and tutorials

- Medium term:
- Begin investigating and integrating quantization methods
- Begin investigating hyperparameter optimization tools
- Investigate custom training loops
- Implement other compression methods, such as structured pruning



11/25/2024 15

Conclusion

- ML models should be compressed before moving them to hardware, 
to optimize resource and memory usage

- Our goal is to implement various compression methods and develop 
a common interface to use them. We aim to make it easy for users to use 
these methods, and test and compare them

- We are interested in getting more models from WP2 and WP3, and 
discuss the training of models, training loops etc. 


