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Activities in Next Generation Triggers and T1.3
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Introduction

- To improve pattern recognition and keep up with increasing data rates in 
the trigger, aim to put ML models on hardware

- Hardware has limited resources, models should be compressed before 
implementation on hardware

- Much of model compression happens during training, before moving 
model to target hardware

- Many compression methods exist, but there is no common framework, 
no common implementation, no easy way to test and compare

- Our aim is to make it easier to use, study and test different model 
compression methods for NGT and broader communities
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Goal and scope

- Goal: 
- Collect various compression methods
- Develop common interface to users 
- Make it easy for users to adopt these methods for their models
- Make it easy for users to test and compare methods

- Scope:
- Develop software libraries and tools for hardware-aware training of neural 

networks (pruning, quantization etc.)
- Develop general training loop that can be used with compression methods
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Deliverables and milestones

- Internal milestones:
- Flexibility when choosing compression 

algorithms and target hardware

Description Year

MLonFPGA community workshop, to 
identify needs from ATLAS and CMS on 
WP 2 and 3 as inputs to WP 1.2 and 1.3

1

WP1.3 software release 1 with 
open-access documentation

3

WP1.3 software release 2 with 
open-access documentation

4

WP1.3 software release 3 with 
open-access documentation

5
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Pruning

- Not all weights in a neural network are necessary

- Prune weights by setting them to 0. In general, this 
means fewer computations, resulting in reduced 
memory and resource usage

- Specifically for FPGAs, multiplications by 0 can be 
skipped

- Similar benefits for CPUs and GPUs

- Many ways to decide which weights to prune

- Granularity:
- Prune single weights or groups of weights at once
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Quantization

- Instead of the usual 32-bit floating point 
numbers, use fewer bits for weights and 
computations:
- fewer bits means lower resource usage, 

which leaves space for other things, such 
as higher parallelization, or a bigger model

- Bit reduction introduces error, affecting 
accuracy. Quantize during training to allow 
ML model to keep accuracy high.
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The progress so far

- First focus of work: defining common interface and implementing pruning
- Common interface: 

- YAML based configuration for pruning and training hyperparameters
- User supplies the YAML configuration 
- Pruning layers are added automatically

- Pruning:
- Identified a set of state-of-the-art methods
- Selected promising subset to implement
- 4 algorithms implemented so far, 
- Include default YAML configurations for easy use

- Testing on common models such as ResNet and ParT
- Very interested to get more models from WP2 and WP3
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Adding pruning layers to model

- Pruning layers defined by YAML file:
- Which pruning method to use
- Pruning hyperparameters
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Training pruned models

- Different pruning methods have 
different training steps:

- Standard, multiple rounds, 
pre-training, fine-tuning steps

- Training configuration defined by a 
YAML file
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Example results

ResNet20, dataset CIFAR10
Pruning method: CS
Weights pruned: 87.55%
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Example results

ResNet20, dataset CIFAR10
Pruning method: PDP
Weights pruned: 90%



11/25/2024 13

Example results

ParT
Pruning method: PDP
Weights pruned: 81.75%
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Next steps

- Short term:
- Test models from the community
- Polish the library for release
- Prepare documentation and tutorials

- Medium term:
- Begin investigating and integrating quantization methods
- Begin investigating hyperparameter optimization tools
- Investigate custom training loops
- Implement other compression methods, such as structured pruning
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Conclusion

- ML models should be compressed before moving them to hardware, 
to optimize resource and memory usage

- Our goal is to implement various compression methods and develop 
a common interface to use them. We aim to make it easy for users to use 
these methods, and test and compare them

- We are interested in getting more models from WP2 and WP3, and 
discuss the training of models, training loops etc. 


