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Activities in Next Generation Triggers and T1.3

Next Generation Triggers

WP1: Infrastructure,
Algorithms

\ and Theory /

WP2: Enhancing the
ATLAS Trigger
and Data Acquisition

T1.1: Hardware and

services for large scale
NN optimisation and
training, and physics
simulation

T1.4: Tensor Networks for
| Quantum Systems
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WP3: Rethinking the
CMS Real-Time
Data Processing

WP4: Education
Programmes
and Outreach

T1.2: Fast inference of
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T1.5: New computing
strategies for data
modeling and
interpretation

complex network
architectures on LHC
online systems

T1.3: Hardware-aware Al
optimization
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T1.6: New Physics
scenarios and Standard
Model properties as
trigger benchmarks

T1.7: Common software
developments for
heterogeneous
architectures




Introduction

- To improve pattern recognition and keep up with increasing data rates in
the trigger, aim to put ML models on hardware

- Hardware has limited resources, models should be compressed before
implementation on hardware

- Much of model compression happens during training, before moving
model to target hardware

- Many compression methods exist, but there is no common framework,
no common implementation, no easy way to test and compare

- Our aim is to make it easier to use, study and test different model
compression methods for NGT and broader communities
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Goal and scope

- Goal:
- Collect various compression methods
- Develop common interface to users
- Make it easy for users to adopt these methods for their models
- Make it easy for users to test and compare methods

- Scope:
- Develop software libraries and tools for hardware-aware training of neural
networks (pruning, quantization etc.)
- Develop general training loop that can be used with compression methods
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Deliverables and milestones

- Internal milestones:

- Flexibility when choosing compression
algorithms and target hardware

Description

Year

MLonFPGA community workshop, to
identify needs from ATLAS and CMS on
WP 2 and 3 as inputs to WP 1.2 and 1.3

WP1.3 software release 1 with
open-access documentation

WP1.3 software release 2 with
open-access documentation

WP1.3 software release 3 with
open-access documentation
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Time Description Deliverable/Milestone
6m Baseline development: large-scale Integration of the developed algorithms on the
training and optimization workflow on | NNLO library (large-scale training package for
at least one end-to-end training library .CERN custom training workflow on HPC
(Pytorch/Tensorflow) infrastrcture)
12m Support of optimal workflows for - Demonstrator of network training and
hardware-aware pruning techniques architecture scan for a concrete benchmark use
with resource estimation. case from WP2 or WP3
- NNLO tutorial showcasing novel functionalities
- Journal publication
18 m Support for Knowledge Distillation at integration of the developed compression
training workflows in the NNLO library
24m - AutoML-like flow towards automatic | - Mid-point NNLO software release
optimization of quantization and - Journal publication
pruning at training time - NNLO tutorial showcasing novel functionalities
- Application of hardware-aware
training on real-life use cases from
WP2 and WP3
36m Hardware-aware NAS with - Journal publication
quantization and sparsity - NNLO tutorial showcasing novel functionalities
48 m Extension of AutoML-like flow towards | - Journal publication
hardware-consumption prediction at - NNLO tutorial showcasing novel functionalities
training time
60 m - Consolidation of ecosystem of - Final NNLO release

compression models for edge
deployments

- Application of hardware-aware
training on real-life use cases from
WP2 and WP3

- Demonstrator of real-life use case from WP2
and WP3
- Journal publication




Pruning

Not all weights in a neural network are necessary
Prune weights by setting them to 0. In general, this
means fewer computations, resulting in reduced
memory and resource usage

Specifically for FPGAs, multiplications by 0 can be
skipped

Similar benefits for CPUs and GPUs
Many ways to decide which weights to prune

Granularity:
- Prune single weights or groups of weights at once
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Quantization

Instead of the usual 32-bit floating point
numbers, use fewer bits for weights and
computations:
- fewer bits means lower resource usage,
which leaves space for other things, such
as higher parallelization, or a bigger model

Bit reduction introduces error, affecting
accuracy. Quantize during training to allow
ML model to keep accuracy high.
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The progress so far

First focus of work: defining common interface and implementing pruning
Common interface:
- YAML based configuration for pruning and training hyperparameters
- User supplies the YAML configuration
- Pruning layers are added automatically
Pruning:
- ldentified a set of state-of-the-art methods
- Selected promising subset to implement
- 4 algorithms implemented so far,
- Include default YAML configurations for easy use
Testing on common models such as ResNet and ParT
- Very interested to get more models from WP2 and WP3
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Adding pruning layers to model

- Pruning layers defined by YAML file:
- Which pruning method to use
- Pruning hyperparameters

pruning_parameters:
epsilon: 0.015
pruning_method: pdp
sparsity: 0.8
temperature: 1.0e-05
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pruning_parameters:
final_temp: 200
pruning_method: cs
threshold_decay: 1.0e-09
threshold_init: ©

Input layer

l

Layer 1

l

Output layer

Add pruning layers using
pruning configuration
given by user

>

Input layer

l

Pruning layer 1

Layer 1

l

Output layer




Model,

' fi tion. :
- . "raining configuration B B
Training pruned models > ey b

configuration

- Different pruning methods have
different training steps:

Model with pruning layers,
training configuration

- Standard, multiple rounds, Y
pre_tralnlng, flne_tunlng Steps Remove pruning Tra;?mr:r‘;()lgsggith Train model using
- Training configuration defined by a ayers | donfiueat
YAML file

Trained sparse model

Y

End
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Example results s
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validation_acc

Example results s
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Acc/eval (epoch)
tag: Acc/eval (epoch)

Example results
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mod.fc.0

mod.cls_blocks.1.fc2
mod.cls_blocks.1.fcl
mod.cls_blocks.1.attn.out_proj
mod.cls_blocks.0.fc2
mod.cls_blocks.0.fcl
mod.cls_blocks.0.attn.out_proj
mod.blocks.7.fc2
mod.blocks.7.fcl
mod.blocks.7.attn.out_proj
mod.blocks.6.fc2
mod.blocks.6.fcl
mod.blocks.6.attn.out_proj
mod.blocks.5.fc2
mod.blocks.5.fcl
mod.blocks.5.attn.out_proj
mod.blocks.4.fc2
mod.blocks.4.fcl
mod.blocks.4.attn.out_proj
mod.blocks.3.fc2
mod.blocks.3.fcl
mod.blocks.3.attn.out_proj
mod.blocks.2.fc2
mod.blocks.2.fcl
mod.blocks.2.attn.out_proj
mod.blocks.1.fc2
mod.blocks.1.fcl
mod.blocks.1.attn.out_proj
mod.blocks.0.fc2
mod.blocks.0.fcl
mod.blocks.0.attn.out_proj
mod.pair_embed.embed.10
mod.pair_embed.embed.7
mod.pair_embed.embed.4
mod.pair_embed.embed.1
mod.embed.embed.7
mod.embed.embed.4
mod.embed.embed.1
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Next steps

- Short term:
- Test models from the community
- Polish the library for release
- Prepare documentation and tutorials
- Medium term:
- Begin investigating and integrating quantization methods
- Begin investigating hyperparameter optimization tools
- Investigate custom training loops
- Implement other compression methods, such as structured pruning
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Conclusion

- ML models should be compressed before moving them to hardware,
to optimize resource and memory usage

- Our goal is to implement various compression methods and develop
a common interface to use them. We aim to make it easy for users to use
these methods, and test and compare them

- We are interested in getting more models from WP2 and WP3, and
discuss the training of models, training loops etc.
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