Next Generation Triggers 1st Technical Workshop 25-27 November, 2024

Task 1.3: Hardware-aware Al optimization

Roope Niemi, Vladimir Loncar (lead), Michael Kagan (deputy lead), Maurizio Pierini (deputy lead), Dimitrios Danopoulos, Sebastian Dittmeier, Lorenzo Moneta, Chang Sun

Activities in Next Generation Triggers and T1.3

Introduction

- To improve pattern recognition and keep up with increasing data rates in the trigger, aim to put ML models on hardware
- Hardware has limited resources, models should be compressed before implementation on hardware
- Much of model compression happens during training, before moving model to target hardware
- Many compression methods exist, but there is no common framework, no common implementation, no easy way to test and compare
- Our aim is to make it easier to use, study and test different model compression methods for NGT and broader communities

Goal and scope

- Goal:

- Collect various compression methods
- Develop common interface to users
- Make it easy for users to adopt these methods for their models
- Make it easy for users to test and compare methods

- Scope:

- Develop software libraries and tools for hardware-aware training of neural networks (pruning, quantization etc.)
- Develop general training loop that can be used with compression methods

Deliverables and milestones

- Internal milestones:

- Flexibility when choosing compression algorithms and target hardware

Description	Year
MLonFPGA community workshop, to identify needs from ATLAS and CMS on WP 2 and 3 as inputs to WP 1.2 and 1.3	1
WP1.3 software release 1 with open-access documentation	3
WP1.3 software release 2 with open-access documentation	4
WP1.3 software release 3 with open-access documentation	5

Time	Description	Deliverable/Milestone
6 m	Baseline development: large-scale training and optimization workflow on at least one end-to-end training library (Pytorch/Tensorflow)	Integration of the developed algorithms on the NNLO library (large-scale training package for CERN custom training workflow on HPC infrastructure)
12 m	Support of optimal workflows for hardware-aware pruning techniques with resource estimation.	 Demonstrator of network training and architecture scan for a concrete benchmark use case from WP2 or WP3 NNLO tutorial showcasing novel functionalities Journal publication
18 m	Support for Knowledge Distillation at training	integration of the developed compression workflows in the NNLO library
24 m	 AutoML-like flow towards automatic optimization of quantization and pruning at training time Application of hardware-aware training on real-life use cases from WP2 and WP3 	 Mid-point NNLO software release Journal publication NNLO tutorial showcasing novel functionalities
36 m	Hardware-aware NAS with quantization and sparsity	 Journal publication NNLO tutorial showcasing novel functionalities
48 m	Extension of AutoML-like flow towards hardware-consumption prediction at training time	 Journal publication NNLO tutorial showcasing novel functionalities
60 m	 Consolidation of ecosystem of compression models for edge deployments Application of hardware-aware training on real-life use cases from WP2 and WP3 	 Final NNLO release Demonstrator of real-life use case from WP2 and WP3 Journal publication

Pruning

- Not all weights in a neural network are necessary
- Prune weights by setting them to 0. In general, this means fewer computations, resulting in reduced memory and resource usage
- Specifically for FPGAs, multiplications by 0 can be skipped
- Similar benefits for CPUs and GPUs
- Many ways to decide which weights to prune
- Granularity:
 - Prune single weights or groups of weights at once

Quantization

- Instead of the usual 32-bit floating point numbers, use fewer bits for weights and computations:
 - fewer bits means lower resource usage, which leaves space for other things, such as higher parallelization, or a bigger model
- Bit reduction introduces error, affecting accuracy. Quantize during training to allow ML model to keep accuracy high.

The progress so far

- First focus of work: defining common interface and implementing pruning
- Common interface:
 - YAML based configuration for pruning and training hyperparameters
 - User supplies the YAML configuration
 - Pruning layers are added automatically
- Pruning:
 - Identified a set of state-of-the-art methods
 - Selected promising subset to implement
 - 4 algorithms implemented so far,
 - Include default YAML configurations for easy use
- Testing on common models such as ResNet and ParT
 - Very interested to get more models from WP2 and WP3

Adding pruning layers to model

- Pruning layers defined by YAML file:

- Which pruning method to use
- Pruning hyperparameters

pruning_parameters:		
epsilon: 0.015		
pruning_method: pdp		
sparsity: 0.8		
temperature: 1.0e-05		

pruning_parameters: final_temp: 200 pruning_method: cs threshold_decay: 1.0e-09 threshold init: 0

Training pruned models

- Different pruning methods have different training steps:
 - Standard, multiple rounds, pre-training, fine-tuning steps
- Training configuration defined by a YAML file

Example results

ResNet20, dataset CIFAR10 Pruning method: CS Weights pruned: 87.55%

validation_acc tag: validation_acc

validation_remaining_weights tag: validation_remaining_weights

Example results

ResNet20, dataset CIFAR10 Pruning method: PDP Weights pruned: 90%

validation_acc tag: validation_acc

validation_remaining_weights tag: validation_remaining_weights

Example results

ParT Pruning method: PDP Weights pruned: 81.75%

validation_remaining_weights tag: validation_remaining_weights

Next steps

- Short term:

- Test models from the community
- Polish the library for release
- Prepare documentation and tutorials
- Medium term:
 - Begin investigating and integrating quantization methods
 - Begin investigating hyperparameter optimization tools
 - Investigate custom training loops
 - Implement other compression methods, such as structured pruning

Conclusion

- ML models should be compressed before moving them to hardware, to optimize resource and memory usage

- Our goal is to implement various compression methods and develop a common interface to use them. We aim to make it easy for users to use these methods, and test and compare them
- We are interested in getting more models from WP2 and WP3, and discuss the training of models, training loops etc.

