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A class of  tailored variational ansatz states 
on a lattice many-body quantum system

| many-bodyi =
X

s1,··· ,sN

 s1,··· ,sN |s1, · · · , sN i dim (ℋ) = dN
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A class of  tailored variational ansatz states 
on a lattice many-body quantum system

| many-bodyi =
X

s1,··· ,sN

 s1,··· ,sN |s1, · · · , sN i

 is obtained contracting smaller tensors over auxiliary indexes

| MPSi =
X

{si},{↵i}

A(s1)
↵1

A(s2)
↵1,↵2

· · ·A(sN )
↵N�1

|s1, s2, · · · , sN i

· · · A AA
sx�1 sx sx+1

· · · dim (MPS) = N d D2

dim (ℋ) = dN
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A simple example

Consider a quantum system in a pure state|Ψ〉 ∈ HH = HA ⊗HB

|Ψ⟩ =
d

∑
i,j

Ψi,j | i⟩A ⊗ | j⟩B
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A simple example

Consider a quantum system in a pure state|Ψ〉 ∈ HH = HA ⊗HB

|Ψ⟩ =
d

∑
i,j

Ψi,j | i⟩A ⊗ | j⟩B

Schmidt decomposition:

|Ψ〉 =
∑

j

cj |ψj〉A ⊗ |ψj〉B cj ≥ 0;
∑

j
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j = 1
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A simple example

Consider a quantum system in a pure state|Ψ〉 ∈ HH = HA ⊗HB

|Ψ⟩ =
d

∑
i,j

Ψi,j | i⟩A ⊗ | j⟩B

Maximal entangled state: ci = cj =
1

D
→ Sa = log D

Schmidt decomposition:

|Ψ〉 =
∑

j

cj |ψj〉A ⊗ |ψj〉B cj ≥ 0;
∑

j

c2
j = 1

D
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(N)(1) (2)

Schmidt picture: Matrix Product State (MPS)
|Ψ⟩ =

D∑

a=1

|φ(1)
a ⟩λ(1)

a |φ(2,...,N)
a ⟩ =

D∑

a=1

d∑

s1=1

|s1⟩⟨s1|φ
(1)
a ⟩λ(1)

a |φ(2,...,N)
a ⟩

=
D∑

a=1

d∑

s1=1

|s1⟩Aa[s1]|φ
(2,...,N)
a ⟩ =

D∑

a,b=1

d∑

s1,s2=1

|s1⟩Aa[s1]|s2⟩Aab[s2]|φ
(3,...,N)
b ⟩

= · · · =
d∑

{sj}=1

Tr{A[s1] · · ·A[sN ]}|s1⟩ · · · |sN ⟩



5

Tensor network algorithms: 
an overview

(N)(1) (2)

Schmidt picture: Matrix Product State (MPS)
|Ψ⟩ =

D∑

a=1

|φ(1)
a ⟩λ(1)

a |φ(2,...,N)
a ⟩ =

D∑

a=1

d∑

s1=1

|s1⟩⟨s1|φ
(1)
a ⟩λ(1)

a |φ(2,...,N)
a ⟩

=
D∑

a=1

d∑

s1=1

|s1⟩Aa[s1]|φ
(2,...,N)
a ⟩ =

D∑

a,b=1

d∑

s1,s2=1

|s1⟩Aa[s1]|s2⟩Aab[s2]|φ
(3,...,N)
b ⟩

= · · · =
d∑

{sj}=1

Tr{A[s1] · · ·A[sN ]}|s1⟩ · · · |sN ⟩ D ∝ exp SL



5

Tensor network algorithms: 
an overview

(N)(1) (2)

Schmidt picture: Matrix Product State (MPS)
|Ψ⟩ =

D∑

a=1

|φ(1)
a ⟩λ(1)

a |φ(2,...,N)
a ⟩ =

D∑

a=1

d∑

s1=1

|s1⟩⟨s1|φ
(1)
a ⟩λ(1)

a |φ(2,...,N)
a ⟩

=
D∑

a=1

d∑

s1=1

|s1⟩Aa[s1]|φ
(2,...,N)
a ⟩ =

D∑

a,b=1

d∑

s1,s2=1

|s1⟩Aa[s1]|s2⟩Aab[s2]|φ
(3,...,N)
b ⟩

= · · · =
d∑

{sj}=1
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log (D) ∝
c + c̄

3
log (N)

quantum correlations = entanglement =
C. Holzhey, F. Larsen, F. Wilczek, Nucl. Phys. B (1994) 

G. Vidal, J.I. Latorre, E. Rico, A. Kitaev, Phys. Rev. Lett. (2003) 
B.-Q. Jin, V.E. Korepin, J. Stat. Phys. (2004) 
P. Calabrese, J.J. Cardy, Stat. Mech. (2004)
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Tensor network algorithms: 
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Well-suited to described translational invariant systems

· · · A AA
sx�1 sx sx+1

· · ·

Simple way to obtain any expectation value (Transfer matrix)
(j)(i)

hOiOji = Tr
n
E

N�j+i�2
ÕiE

j�i
Õj

o

E =
X

s

A⇤[s]⌦A[s]

Õ =
X

s,s0

A
⇤[s]⌦A[s0]hs|O|s0i

· · · · · ·

· · · · · ·
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Optimal to minimize the energy (DMRG)
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Well-suited to described translational invariant systems

Optimal to minimize the energy (DMRG)

· · · A AA
sx�1 sx sx+1

· · ·

Simple way to obtain any expectation value (Transfer matrix)
(j)(i)

hOiOji = Tr
n
E

N�j+i�2
ÕiE

j�i
Õj

o

E =
X

s

A⇤[s]⌦A[s]

Õ =
X

s,s0

A
⇤[s]⌦A[s0]hs|O|s0i

· · · · · ·

· · · · · ·

Encoded the entropic boundary law (VBS picture)

AD×D[s]|s⟩ds=1
C

D
⊗ C

D
A
−→

C
d
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· · · A AA
sx�1 sx sx+1

· · ·

(j)(i)

· · · · · ·
s1 s2 sx

Ψ

Matrix Product State (MPS) 
sequencial generation
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· · · A AA
sx�1 sx sx+1

· · ·

(j)(i)

· · · · · ·
s1 s2 sx

Ψ

Matrix Product State (MPS) 
sequencial generation

· · ·

· · ·

· · ·

Tree tensor network (TTN) 
multiscale generation
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Variational (non-perturbative) method for Hamiltonian systems 
Extremely useful in 1D systems (MPS) 

Proposals and extensions in higher dimensions (TNS)  
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Variational (non-perturbative) method for Hamiltonian systems 
Extremely useful in 1D systems (MPS) 

Proposals and extensions in higher dimensions (TNS)  

Ground states 
Low-energy excitations 

Thermal states 
Time evolution 

Proposal for fermionic systems 

· · · A AA
sx�1 sx sx+1

· · ·
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String wave-front 
characterised by: 

-Electric field spreading 
-Entanglement propagation 

O(100) sites simulation
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Confinement and string breaking: 
QED in (1+1)-d (Schwinger model)
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Electric field of  two mesons 
during the scattering evolution

Entanglement entropy 
during the scattering

We prepare two mesons in a dynamical state 
giving them momentum towards the center
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Tensor network algorithms 
and machine learning

arXiv:2402.11022 (2024)

O(400) sites simulation



11

Tensor network algorithms 
and machine learning

arXiv:2402.11022 (2024)

O(400) sites simulation
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Conclusions and outlook

-First results (preprints) on Tensor Networks and Quantum Machine Learning analysis with O(400) sites. 
-Ongoing projects on real-time dynamics of High-Energy Physics and classical simulation within GPUs architectures
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Conclusions and outlook

-First results (preprints) on Tensor Networks and Quantum Machine Learning analysis with O(400) sites. 
-Ongoing projects on real-time dynamics of High-Energy Physics and classical simulation within GPUs architectures

- Benchmark TNML approach with other existing ML models, to investigate the advantage of the method. 
- Applications (mainly HEP-oriented): 

use TN for the L1-CMS trigger (continuing the present efforts using FPGAs): how this approach 
compares to standard ML in terms of performance, accuracy, trainability and explainability 
explore TN usage for tracking applications, for rare events (anomaly detection) 
use TN for quantum circuit simulation and hybrid quantum hardware applications: quantum error 
correction 
explore potential TNML generative applications (or even reproducing other ML applications with TNML, 
e.g. auto-encoders)
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Workshop Outcomes and Opportunities for Collaboration

Legeza showed the application of tensor networks (TNs) to nuclear and atomic physics, with a particular 
emphasis on optimising hardware architectures. 
His work aligns with Task 1.4 (hardware optimisation) and potentially Task 1.7. 
We will meet with Legeza to determine the value of closer collaboration, focusing on hardware-related insights 
for Task 1.4 and 1.7. (meeting this week to be determined)
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Workshop Outcomes and Opportunities for Collaboration

Presentations by Montangero’s and Marco Zanetti’s groups showcased recent advances, including work like 
arXiv:2409.16075, which reviewed FPGA-implemented machine learning (ML). 
This overlaps with Task 1.4 (ML on FPGAs) and possibly Task 1.2, suggesting a bridging opportunity between 
the two tasks. 
Discuss hosting short visits (1 week) from Zanetti’s collaborators to foster integration with Tasks 1.2 and 1.4, 
potentially evolving into longer stays. (I have already asked Montangero, no answer yet)

Legeza showed the application of tensor networks (TNs) to nuclear and atomic physics, with a particular 
emphasis on optimising hardware architectures. 
His work aligns with Task 1.4 (hardware optimisation) and potentially Task 1.7. 
We will meet with Legeza to determine the value of closer collaboration, focusing on hardware-related insights 
for Task 1.4 and 1.7. (meeting this week to be determined)
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Work Package 1: Infrastructure, Algorithms and Theory
Task 1.4: Tensor Networks for Quantum Systems. 
This task will develop and apply quantum-inspired methodology, in particular Tensor Network algorithms, to 
simulate quantum many-body problems unreachable by classic approaches and benchmark future applications of 
quantum hardware on low-entangled systems to O(100) qubits, progressing towards the development of a software 
stack for quantum machine learning model design, simulation, and deployment. 
Task 1.7: Common software developments for heterogeneous architectures 
To make efficient use of accelerator (GPU and FPGA) devices in the software designed for the High-Luminosity LHC, 
various common developments and improvements are needed in the frameworks and code bases of the experiments 
and Monte Carlo generators. Frameworks need to make efficient use of all available computing resources of single 
compute nodes, and even possibly multiple nodes at the same time. Existing implementations should be 
harmonised between the experiments, and optimisation efforts should be shared. 
Task 1.2: Development framework towards fast inference of complex network architectures on LHC online systems 
In this task, we will work with existing expertise in the experiment collaboration on ongoing work on tools such as 
hls4ml, and on expertise from selected academic and industrial partners to develop ML->FPGA model synthesis 
tools, addressing the needs of WP2 and WP3. The work will also focus on integrating modern ML tooling while 
maintaining the strict latency requirements set forth by LHC experiments’ online selection system. All task items are 
supposed to be co-developed by CERN researchers and external partners with qualified expertise on the topic.


