
Task 1.7:
Common Software Developments
for Heterogeneous Architectures

Jolly Chen on behalf of Task 1.7

NGT Workshop 25.11.2024

2

Overview

Goal Common developments and improvements to make efficient use of accelerator
(GPU and FPGA) devices in software for High-Luminosity LHC. Existing implementations
should be harmonized between the experiments, and optimization efforts should be
shared.

Parties ALICE, ATLAS, CMS, LHCb, EP-SFT, IT-FTI-PSE

Multiple R&D Themes
▶ Efficient heterogeneous scheduling
▶ Efficient portable data structures
▶ Efficient accelerator interfaces to ML inference
▶ Common accelerated libraries
▶ Alternative programming languages

3

Efficient Heterogeneous Scheduling

Problem Scattered approaches to efficiently
schedule asynchronous tasks that depend on
other tasks, across CPUs and accelerators (e.g.,
"multiple GPUs") with minimal idle time
▶ ATLAS, CMS, and LHCb developed similar

multi-threaded task scheduling techniques in
their offline/trigger software, using oneTBB.

▶ ALICE uses Message Passing multi-process
architecture

▶ Started with the task scheduling method
used by Gaudi (the framework of ATLAS and
LHCb) to investigate a scheduling technique
using coroutines

Calorimeter
Clusterization

Track
Reconstruction

Calorimeter
Clusters

Particle
Tracks

Electron
Reconstruction

Electrons

https://atlas.cern/
https://cms.cern/
https://lhcb-outreach.web.cern.ch/
https://github.com/oneapi-src/oneTBB
https://alice.cern/
https://gitlab.cern.ch/gaudi/Gaudi

4

Using C++20 Coroutines with TBB

run

TBB
Thread 1

TBB
task

Sc
he

du
le

r

run

(GPU)
wait

TBB
task

TBB
task

run

▶ Coroutines can suspend their
execution, return control to their
caller, and resume later

▶ Algorithms are executed by
multiple TBB tasks:
⊳ When an algorithm suspends

itself, the task executing it
finishes

⊳ The scheduler adds a new task
to the pool once the algorithm is
ready to resume its operation
(its GPU operation has finished)

▶ Initial, highly experimental code
availableጰ:
https://github.com/cern-nextgen
/wp1.7-scheduler-tests

TBB
task

TBB
task

run

(GPU)
wait

run

Algorithm 1

Algorithm 2

Algorithm 3

ጰ Arkadijs Slobodkins

https://en.cppreference.com/w/cpp/language/coroutines
https://github.com/cern-nextgen/wp1.7-scheduler-tests
https://github.com/cern-nextgen/wp1.7-scheduler-tests
mailto:arkadijs.slobodkins@cern.ch

5

Efficient Heterogeneous Scheduling

Planned for 2025

▶ Set up representative jobs that would reconstruct charged particle tracks with
ATLAS’s traccc and CMS’s patatrack code for compute performance evaluations.

▶ Add a scheduler mimicking CMSSW’s task scheduler for comparison.

▶ Investigate upcoming standard C++ parallelism (std::execution) for scheduling
reconstruction algorithms / modules in a multi-threaded application.

https://github.com/acts-project/traccc
https://github.com/cms-patatrack/pixeltrack-standalone

6

Efficient Portable Data Structures
Problem Need vector<Track> as array-of-structs (AoS), vector<pt>, vector<phi>,... as
struct-of-arrays (SoA), array-of-struct-of-array (AoSoA) etc.
Currently automatic AoS->SoA conversion done by each experiment, separately, e.g. with
C++ preprocessor macros (CMS) and template metaprogramming (ACTS R&D)

Microbenchmark of benefits of SoA over AoSጰ

AoS
struct S { double x1, x2, x3, … };

using AoS = std::vector<S>;

SoA
struct SoA { std::vector<double> x1, x2, x3, … }

Operations
MulAdd
SqrtLog

ጰ Jolly Chen

https://github.com/cms-sw/cmssw/tree/master/DataFormats/SoATemplate
https://github.com/acts-project/traccc/blob/main/core/include/traccc/utils/array_wrapper.hpp
mailto:jolly.chen@cern.ch

▶ Intel® Core™ i9-9900K CPU @
3.60GHz

▶ Calculations performed on
double-precision floating
point values stored in
std::vector containers

▶ Container size: 10 million
▶ 10 repetitions
▶ MulAdd*

AoS: ~10-100ms
SoA: ~10ms

▶ SqrtLog*

AoS: ~150-300ms
SoA: ~150ms

▶ Code on GitHub

Benefits of SoA over AoS

7

*Similar results with AVX2 auto-vectorization enabled

https://github.com/cern-nextgen/reflmempp/tree/main/motivation

8

Efficient Portable Data Structures

We design data structures that can adapt to different memory layouts and hence to
different hardware (CPU/GPU) and algorithms with two approaches:

- Using C++ reflectionጰ, very forward-looking;
- Template-basedጰ approach, using only features supported in C++23. A refinement of a

current implementation used in ACTS R&D.

Planned for 2025

▶ Implement struct-of-array for nested data structures for both approaches.
▶ Analyze the requirements of the stakeholders and implementing them for our data

structures.
▶ Benchmarking

○ Create test cases for both approaches, including agreeing on a prototype EDM
○ Benchmarking these data structures on the TPC reconstruction code of ALICE.

ጰ Jolly Chen, ጰ Oliver Rietmann

https://github.com/cern-nextgen/reflmempp
https://github.com/cern-nextgen/wp1.7-soa-wrapper
mailto:jolly.chen@cern.ch
mailto:oliver.rietmann@cern.ch

9

Efficient Accelerator Interfaces to ML Inference

Product on
XYZ (SOA)

ML model
running on

XYZ
Output on
XYZ (SOA)

Heterogeneous
producer

Product on
GPU (SOA) ML model Output on

GPU (SOA)

Product on
CPU (SOA)

Product on
CPU (SOA)

What we want

What we have

Expensive copy/conversion
ML Framework

dependent memory
allocation

Expensive copy/conversion

Heterogeneous
producer

Heterogeneous
producer

running on XYZ

Heterogeneous
producer

running on XYZ*

Portable ML model and the same
memory management as for other

heterogeneous algorithms

* XYZ = Backend among CPU, AMD GPU, Intel GPU, NVIDIA GPU, future backends…

10

Efficient Accelerator Interfaces to ML Inference

Planned for 2025

▶ Prototypes with XLA/AOT, PyTorch, SOFIE direct inference to eliminate intermediate
data transformations
⊳ Study portability of these solutions on different GPUs.
⊳ Determine relevance / criteria / requirements of memory layout for input and

output data for different inference engines
▶ Develop a continuous benchmarking suite for inference of different model kinds

(CNN, GNN, …) and testing the options of different inference engines.
▶ Investigating aspects used by Services for Optimized Network Inference on

Coprocessors (SONIC)

TECH starting March 2025

https://github.com/fastmachinelearning/SonicCMS

11

Common Accelerated Libraries
Problem Most experiments have their own collection of kernels for common operations
in HEP. Having a central repository with optimal and portable versions ensures that our
software can efficiently run on various hardware architectures without significant
rework.
Planned for 2025
▶ Do a market survey of existing small matrix (10x10..50x50) kernels. Benchmark w.r.t

existing general (i.e. not optimized for small) matrix solutions for GPUs. Decide
whether an in-house development is worthwhile.

▶ Implement continuous performance monitoring for an accelerated lorentz vector
library, with CPU and CUDA implementations.

▶ Preliminary study on caching strategies of detector geometry, navigation,
propagation computations for accelerator devices

▶ Prototype parallel and portable algorithms like prefix scans, sorting, clustering

LD expected to start early Feb 2025, DOCT starting Jan 2025

12

Alternative Programming Languages

Problem Compiled languages C++ / CUDA / SYCL /... are difficult, Python is slow; what else
is suitable?

Porting the CMS Patatrack pixel reconstruction to Juliaጰ

▶ Pixel reconstruction = The process of identifying and reconstructing particle
trajectories by analyzing data from pixel detectors.

▶ Standalone application extracted from CMS software

▶ Tested over the years on multiple CPU and GPU technologies
(Alpaka, std::par, OpenMP, CUDA, HIP, SYCL, Kokkos, etc.)

▶ Julia has shown potential in previous HEP evaluations1,2

1 https://link.springer.com/article/10.1007/s41781-023-00104-x
2 https://github.com/JuliaHEP/JetReconstruction.jl
ጰ Maya Ali, Mohamad Ayman Charaf, Mohamad Khaled Charaf

https://link.springer.com/article/10.1007/s41781-023-00104-x
https://github.com/JuliaHEP/JetReconstruction.jl
mailto:maya.ali@cern.ch
mailto:mohamad.ayman.charaf@cern.ch
mailto:mohamad.khaled.charaf@cern.ch

▶ No prior experience with Julia and
CMSSW

▶ Ported and Validated 100% of the
local reconstruction

▶ Ported the Tracks Modules and
currently validating.

▶ Achieved a running time of 35.1s in
Julia, comparable to 31.8s in C++
for processing 1000 events with a
single-threaded CPU.

▶ Results also presented at JuliaHEP

13

CMS Pixel Reconstruction - Preliminary Results

A B
C

D

E

F

g

BeamSpot

CountValidator

Vertices

Tracks

RecHits
Clusterizer

✓

✓

✓

✓

HistoValidator

https://indico.cern.ch/event/1410341/contributions/6135572/

14

Alternative Programming Languages

Planned for 2025

▶ Define an set of languages to study. This list must contain at least Julia and Mojo.

▶ Define a set of usability and feature benchmarks and corresponding test cases,
based on studies done for Julia. These need to cover the criteria of interoperability
with C++; use of accelerators; ease of use. Other criteria should be investigated.

15

Conclusion

▶ Lots of progress on Heterogeneous scheduling, Portable Data Structures and
Alternative Programming Languages!

⊳ Prototype of multi-threaded task scheduler with oneTBB and coroutines

⊳ Two implementations of data structures with adaptive memory layouts

⊳ CMS local pixel reconstruction fully ported to Julia with comparable performance to C++

▶ More prototyping and benchmarking planned for 2025

▶ Common Accelerated Libraries and ML Inference subprojects starting up in 2025

https://github.com/cern-nextgen/wp1.7-scheduler-tests
https://github.com/cern-nextgen/reflmempp
https://github.com/cern-nextgen/wp1.7-soa-wrapper
https://indico.cern.ch/event/1410341/contributions/6135572/

16

Resources & Contact
Github for R&D Code at https://github.com/cern-nextgen

Coordination at ngt-1-7-coord@cern.ch

Discussions at https://mattermost.web.cern.ch/nextgen-triggers/channels/task17

Indico category https://indico.cern.ch/category/17798/

Task Leaders

Axel.Naumann@cern.ch Andrea.Bocci@cern.ch Attila.Krasznahorkay@cern.ch

The Team

Arkadijs Slobodkins Maya Ali Mohamad Ayman
Charaf

Mohamad Khaled
Charaf

Jolly Chen Oliver Rietmann

https://github.com/cern-nextgen
mailto:ngt-1-7-coord@cern.ch
https://mattermost.web.cern.ch/nextgen-triggers/channels/task17
https://indico.cern.ch/category/17798/
mailto:Axel.Naumann@cern.ch
mailto:Andrea.Bocci@cern.ch
mailto:Attila.Krasznahorkay@cern.ch
mailto:arkadijs.slobodkins@cern.ch
mailto:maya.ali@cern.ch
mailto:mohamad.ayman.charaf@cern.ch
mailto:mohamad.ayman.charaf@cern.ch
mailto:mohamad.khaled.charaf@cern.ch
mailto:mohamad.khaled.charaf@cern.ch
mailto:jolly.chen@cern.ch
mailto:oliver.rietmann@cern.ch

18

Backup - Layout Benchmark Runtimes

