
Task 1.7: 
Common Software Developments 
for Heterogeneous Architectures

Jolly Chen on behalf of Task 1.7

NGT Workshop 25.11.2024



2

Overview

Goal Common developments and improvements to make efficient use of accelerator 
(GPU and FPGA) devices in software for High-Luminosity LHC. Existing implementations 
should be harmonized between the experiments, and optimization efforts should be 
shared.

Parties ALICE, ATLAS, CMS, LHCb, EP-SFT, IT-FTI-PSE 

Multiple R&D Themes
▶ Efficient heterogeneous scheduling
▶ Efficient portable data structures
▶ Efficient accelerator interfaces to ML inference
▶ Common accelerated libraries
▶ Alternative programming languages
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Efficient Heterogeneous Scheduling

Problem Scattered approaches to efficiently  
schedule asynchronous tasks that depend on 
other tasks, across CPUs and accelerators (e.g., 
"multiple GPUs") with minimal idle time
▶ ATLAS, CMS, and LHCb developed similar 

multi-threaded task scheduling techniques in 
their offline/trigger software, using oneTBB.

▶ ALICE uses Message Passing multi-process 
architecture

▶ Started with the task scheduling method 
used by Gaudi (the framework of ATLAS and 
LHCb) to investigate a scheduling technique 
using coroutines
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https://atlas.cern/
https://cms.cern/
https://lhcb-outreach.web.cern.ch/
https://github.com/oneapi-src/oneTBB
https://alice.cern/
https://gitlab.cern.ch/gaudi/Gaudi
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Using C++20 Coroutines with TBB
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▶ Coroutines can suspend their 
execution, return control to their 
caller, and resume later

▶ Algorithms are executed by 
multiple TBB tasks:
⊳ When an algorithm suspends 

itself, the task executing it 
finishes

⊳ The scheduler adds a new task 
to the pool once the algorithm is 
ready to resume its operation 
(its GPU operation has finished)

▶ Initial, highly experimental code 
availableጰ: 
https://github.com/cern-nextgen
/wp1.7-scheduler-tests 
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ጰ Arkadijs Slobodkins

https://en.cppreference.com/w/cpp/language/coroutines
https://github.com/cern-nextgen/wp1.7-scheduler-tests
https://github.com/cern-nextgen/wp1.7-scheduler-tests
mailto:arkadijs.slobodkins@cern.ch
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Efficient Heterogeneous Scheduling

Planned for 2025

▶ Set up representative jobs that would reconstruct charged particle tracks with 
ATLAS’s traccc and CMS’s patatrack code for compute performance evaluations.

▶ Add a scheduler mimicking CMSSW’s task scheduler for comparison.

▶ Investigate upcoming standard C++ parallelism (std::execution) for scheduling 
reconstruction algorithms / modules in a multi-threaded application.

https://github.com/acts-project/traccc
https://github.com/cms-patatrack/pixeltrack-standalone
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Efficient Portable Data Structures
Problem Need vector<Track> as array-of-structs (AoS), vector<pt>, vector<phi>,... as 
struct-of-arrays (SoA), array-of-struct-of-array (AoSoA) etc. 
Currently automatic AoS->SoA conversion done by each experiment, separately, e.g. with 
C++ preprocessor macros (CMS) and template metaprogramming (ACTS R&D)

Microbenchmark of benefits of SoA over AoSጰ

AoS 
struct S { double x1, x2, x3, … };

using AoS = std::vector<S>;

SoA 
struct SoA { std::vector<double> x1, x2, x3, … }

Operations
MulAdd  
SqrtLog

ጰ Jolly Chen

https://github.com/cms-sw/cmssw/tree/master/DataFormats/SoATemplate
https://github.com/acts-project/traccc/blob/main/core/include/traccc/utils/array_wrapper.hpp
mailto:jolly.chen@cern.ch


▶ Intel® Core™ i9-9900K CPU @ 
3.60GHz

▶ Calculations performed on  
double-precision floating 
point values stored in 
std::vector containers

▶ Container size: 10 million
▶ 10 repetitions
▶ MulAdd*

AoS: ~10-100ms
SoA: ~10ms

▶ SqrtLog*

AoS: ~150-300ms
SoA: ~150ms

▶ Code on GitHub 

Benefits of SoA over AoS
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*Similar results with AVX2 auto-vectorization enabled 

https://github.com/cern-nextgen/reflmempp/tree/main/motivation
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Efficient Portable Data Structures

We design data structures that can adapt to different memory layouts and hence to 
different hardware (CPU/GPU) and algorithms with two approaches: 

- Using C++ reflectionጰ, very forward-looking; 
- Template-basedጰ approach, using only features supported in C++23. A refinement of a 

current implementation used in ACTS R&D.

Planned for 2025 

▶ Implement struct-of-array for nested data structures for both approaches.
▶ Analyze the requirements of the stakeholders and implementing them for our data 

structures.
▶ Benchmarking

○ Create test cases for both approaches, including agreeing on a prototype EDM
○ Benchmarking these data structures on the TPC reconstruction code of ALICE.

ጰ Jolly Chen, ጰ Oliver Rietmann

https://github.com/cern-nextgen/reflmempp
https://github.com/cern-nextgen/wp1.7-soa-wrapper
mailto:jolly.chen@cern.ch
mailto:oliver.rietmann@cern.ch
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Efficient Accelerator Interfaces to ML Inference
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Portable ML model and the same 
memory management as for other 

heterogeneous algorithms

* XYZ = Backend among CPU, AMD GPU, Intel GPU, NVIDIA GPU, future backends…
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Efficient Accelerator Interfaces to ML Inference

Planned for 2025

▶ Prototypes with XLA/AOT, PyTorch, SOFIE direct inference to eliminate intermediate 
data transformations
⊳ Study portability of these solutions on different GPUs.
⊳ Determine relevance / criteria / requirements of memory layout for input and 

output data for different inference engines
▶ Develop a continuous benchmarking suite for inference of different model kinds 

(CNN, GNN, …) and testing the options of different inference engines.
▶ Investigating aspects used by Services for Optimized Network Inference on 

Coprocessors (SONIC)

TECH starting March 2025

https://github.com/fastmachinelearning/SonicCMS
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Common Accelerated Libraries
Problem Most experiments have their own collection of kernels for common operations 
in HEP. Having a central repository with optimal and portable versions ensures that our 
software can efficiently run on various hardware architectures without significant 
rework.
Planned for 2025
▶ Do a market survey of existing small matrix (10x10..50x50) kernels. Benchmark w.r.t 

existing general (i.e. not optimized for small) matrix solutions for GPUs. Decide 
whether an in-house development is worthwhile.

▶ Implement continuous performance monitoring for an accelerated lorentz vector 
library, with CPU and CUDA implementations.

▶ Preliminary study on caching strategies of detector geometry, navigation, 
propagation computations for accelerator devices

▶ Prototype parallel and portable algorithms like prefix scans, sorting, clustering

LD expected to start early Feb 2025, DOCT starting Jan 2025
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Alternative Programming Languages

Problem Compiled languages C++ / CUDA / SYCL /... are difficult, Python is slow; what else 
is suitable?

Porting the CMS Patatrack pixel reconstruction to Juliaጰ

▶ Pixel reconstruction = The process of identifying and reconstructing particle 
trajectories by analyzing data from pixel detectors.

▶ Standalone application extracted from CMS software

▶ Tested over the years on multiple CPU and GPU technologies 
(Alpaka, std::par, OpenMP, CUDA, HIP, SYCL, Kokkos, etc.)

▶ Julia has shown potential in previous HEP evaluations1,2

1  https://link.springer.com/article/10.1007/s41781-023-00104-x 
2 https://github.com/JuliaHEP/JetReconstruction.jl 
ጰ Maya Ali, Mohamad Ayman Charaf, Mohamad Khaled Charaf 

https://link.springer.com/article/10.1007/s41781-023-00104-x
https://github.com/JuliaHEP/JetReconstruction.jl
mailto:maya.ali@cern.ch
mailto:mohamad.ayman.charaf@cern.ch
mailto:mohamad.khaled.charaf@cern.ch


▶ No prior experience with Julia and 
CMSSW

▶ Ported and Validated 100% of the 
local reconstruction

▶ Ported the Tracks Modules and 
currently validating.

▶ Achieved a running time of 35.1s in 
Julia, comparable to 31.8s in C++ 
for processing 1000 events with a 
single-threaded CPU.

▶ Results also presented at JuliaHEP
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CMS Pixel Reconstruction - Preliminary Results
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https://indico.cern.ch/event/1410341/contributions/6135572/
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Alternative Programming Languages

Planned for 2025

▶ Define an set of languages to study. This list must contain at least Julia and Mojo.

▶ Define a set of usability and feature benchmarks and corresponding test cases, 
based on studies done for Julia. These need to cover the criteria of interoperability 
with C++; use of accelerators; ease of use. Other criteria should be investigated.
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Conclusion

▶ Lots of progress on Heterogeneous scheduling, Portable Data Structures and 
Alternative Programming Languages!

⊳ Prototype of multi-threaded task scheduler with oneTBB and coroutines 

⊳ Two implementations of data structures with adaptive memory layouts 

⊳ CMS local pixel reconstruction fully ported to Julia with comparable performance to C++ 

▶ More prototyping and benchmarking planned for 2025

▶ Common Accelerated Libraries and ML Inference subprojects starting up in 2025

https://github.com/cern-nextgen/wp1.7-scheduler-tests
https://github.com/cern-nextgen/reflmempp
https://github.com/cern-nextgen/wp1.7-soa-wrapper
https://indico.cern.ch/event/1410341/contributions/6135572/
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Resources & Contact
Github for R&D Code at https://github.com/cern-nextgen

Coordination at ngt-1-7-coord@cern.ch

Discussions at https://mattermost.web.cern.ch/nextgen-triggers/channels/task17 

Indico category https://indico.cern.ch/category/17798/ 

Task Leaders

Axel.Naumann@cern.ch  Andrea.Bocci@cern.ch  Attila.Krasznahorkay@cern.ch 

The Team

Arkadijs Slobodkins Maya Ali  Mohamad Ayman 
Charaf 

Mohamad Khaled 
Charaf 

Jolly Chen  Oliver Rietmann 

https://github.com/cern-nextgen
mailto:ngt-1-7-coord@cern.ch
https://mattermost.web.cern.ch/nextgen-triggers/channels/task17
https://indico.cern.ch/category/17798/
mailto:Axel.Naumann@cern.ch
mailto:Andrea.Bocci@cern.ch
mailto:Attila.Krasznahorkay@cern.ch
mailto:arkadijs.slobodkins@cern.ch
mailto:maya.ali@cern.ch
mailto:mohamad.ayman.charaf@cern.ch
mailto:mohamad.ayman.charaf@cern.ch
mailto:mohamad.khaled.charaf@cern.ch
mailto:mohamad.khaled.charaf@cern.ch
mailto:jolly.chen@cern.ch
mailto:oliver.rietmann@cern.ch
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Backup - Layout Benchmark Runtimes


