
 Date: 8/10/24

Task 3.1.2:
Efficient data structures for 

heterogeneous event 
reconstruction 

Leonardo Beltrame, Andrea Bocci, Eric Cano, 
Felice Pantaleo, Davide Valsecchi for WP3

felice@cern.ch



 Date: 8/10/24 NextGen Triggers, WP3

Motivation for Efficient Data Structures
Data structures in heterogeneous environments might become
the bottleneck when the cost of sequential copies and conversions 
are not negligible wrt to parallel algorithms running on GPU

Goals:

- Efficient memory access patterns
- Seamless integration with machine learning 

models and remote offload through message passing
- Flexibility and maintainability

2

Traditional layout

SoA layout



 Date: 8/10/24 NextGen Triggers, WP3
3

CPU
CPU Thread 0 CPU Thread 1 CPU Thread 2 CPU Thread 3

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

0
0

3
1

Memory access patterns: cached
For optimal CPU cache utilization, a thread a should 
process element i and i+1 so they are likely to be in the 
same cache line.

3



 Date: 8/10/24 NextGen Triggers, WP3

Memory access patterns: coalesced

4

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

0
0

3
1

● L1 data cache is shared among Arithmetic Logic Units (ALUs)
● ALUs work in groups of 16, 32, 64 threads called warps
● Warps execute instructions in a SIMD (Single Instruction, Multiple Data) fashion

Memory Access Patterns:

● Optimal when threads in a warp access consecutive memory addresses
● Coalesced Memory Access:

○ Thread a accesses element i
○ Thread a+1 accesses element i+1

Performance Implications:

● Coalesced access maximizes memory throughput
● Non-coalesced or cached access patterns can result in significant performance loss (up to an order 

of magnitude)
○ If a load is issued by each thread, they have to wait for all the loads in the same warp to 

complete before the next instruction can execute



 Date: 8/10/24 NextGen Triggers, WP3

Challenges in CMSSW SoA Implementations
Need for Standardization:

● Heterogeneous code is becoming ubiquitous in CMSSW
● Standardizing data structures is crucial for maintainability

Previous Issues:

● Multiple ad-hoc SoA implementations
● Inconsistent handling of compile-time vs. runtime sizes
● Multiple memory allocations per SoA
● Inefficient data transfers between host and device

Any approach must be compatible with C++20, the current standard in CMSSW

5



 Date: 8/10/24 NextGen Triggers, WP3

Generic SoA with Boost::PP
● Automate SoA definition with macros
● Use Boost Preprocessor (Boost::PP) library
● Support for runtime-sized SoAs
● Generate layouts and views automatically
● Simplify user experience and code maintenance
● Ensure compatibility with C++20 standard

6



 Date: 8/10/24 NextGen Triggers, WP3

SoA Layout Declaration and Access

7

Example SoA layout declaration:

AoS style preserved with SoA efficiency



 Date: 8/10/24 NextGen Triggers, WP3

Flexible SoA Composition
Dynamic Data Requirements:

● Different algorithms may require different subsets of data
● Avoid carrying unnecessary data through the processing pipeline

Performance Optimization:

● Minimize data copying to reduce overhead
● Enable efficient use of memory and bandwidth

Customization:

● Create tailored SoAs combining relevant data from existing SoAs
● Customize data structures for specific algorithms without incurring overhead

8



 Date: 8/10/24 NextGen Triggers, WP3

Flexible SoA Composition demonstrator
● PhysicsObject SoA: Contains x, y, z, detectorType
● PhysicsObjectExtra SoA: Contains PCA decomposition eigenvalues, eigenvectors, and direction

Create a new SoA containing only x, y, z, and direction without 
copying data

Treat columns as independent entities

● Columns own information about data type and size
● Similar to alpaka::View in functionality
● Efficient data copies and transfers
● Greater flexibility in data management

9



 Date: 8/10/24 NextGen Triggers, WP3

Advantages of the Demonstrator
● Flexibility:

○ Select and combine only the necessary data
○ Tailor data structures for specific algorithms

● Efficiency:
○ Avoid unnecessary data copies
○ Optimize memory usage and data transfers

● Integration with Framework:
○ Potential to optimize data transfers by migrating only required columns
○ Under discussion with CMSSW core team for integration as persisting 

these Composed SoAs or moving them across device would require a 
redesign of the edm::Ref to become heterogeneous

10



 Date: 8/10/24 NextGen Triggers, WP3

SoA and Machine Learning Integration
Direct Interface to Heterogeneous ML Models

● Reduced overhead in data preparation
● Improved inference performance
● Efficient data feeding into models

11

Product on 
XYZ (SOA)

ML model 
running on 

XYZ

Output on 
XYZ (SOA)

Heterogeneous 
producer 

Product on 
GPU (SOA) ML model Output on 

GPU (SOA)

Product on CPU 
(ML FW SOA)

Product on CPU 
(ML FW SOA)

What we want

What we have

expensive copy/conversion

ML Framework 
dependent memory 
allocation expensive copy/conversion

Heterogeneous 
producer

Heterogeneous 
producer 

running on XYZ

Heterogeneous 
producer 

running on XYZ*

ML model is portable and memory 
is managed in the same way as for 
other heterogeneous algorithms

Collaboration with Task 1.7, EP-SFT and 
CMS Machine Learning Group

● Ensuring compatibility with ML workflows
● Optimizing data structures for inference tasks



 Date: 8/10/24 NextGen Triggers, WP3

Integration with Machine Learning Models
Developing a demonstrator interfacing Composed SoA with ML models

● Machine learning models often expect data as contiguous blobs
● Need to pass SoA data efficiently to models
● Solutions:

○ Aggregate Method:
■ Create a aggregate() method for the SoA
■ Allocate a single contiguous buffer
■ Copy selected columns into the buffer
■ Pass the buffer as a single blob to the ML model

○ Modify Model Input Layer:
■ Adjust the ML model to accept multiple tensors (one per column)
■ Avoids the need to copy data into a single buffer

12



 Date: 8/10/24 NextGen Triggers, WP3

Conclusion
● Efficient data structures like our generic SoA are essential for optimizing 

performance in heterogeneous computing environments. Our approach 
addresses the challenges faced in previous implementations, providing 
flexibility, maintainability, and efficiency.

● The ability to flexibly compose SoAs allows us to create tailored data 
structures for specific algorithms without unnecessary data copying. 

● We're continuing to work on integrating this approach with the CMSSW 
framework to further enhance its utility, while working in strong collaboration 
with Task 1.7, CMSSW Framework core team

13



 Date: 8/10/24


