
NGT Task 3.2
Evolving CMSSW into a client-server

distributed application for HLT

A. Bocci
EP/CMD

November 27 2024ᵗʰ A. Bocci - Evolving CMSSW into a client-server distributed application 2 / 20

distributed CMS software

the CMS Software (CMSSW)
● modular

– overall more than 5000 different “modules”

– e.g. HLT configuration for Run-3 composed of
4600 instances of 380 different modules

● parallel
– multithreaded, good scalability over 100 of threads

● heterogeneous
– alpaka-based modules

– single source, built for CPUs, NVIDIA GPUs, AMD GPUs

– transparent backend choice at runtime

● R&D: extend to multi-process/multi-node
– single logical application, multiple machines

– ALICE O2 is multi-process via message passing

– ATLAS uses MPI in HPC environments

https://creativecommons.org/licenses/by-sa/4.0/

November 27 2024ᵗʰ A. Bocci - Evolving CMSSW into a client-server distributed application 3 / 20

use cases

original use case
● GPU-equipped HLT farm

● balance the amount of memory and
processing power available on CPU and GPU

● fixed at time of procurement
● the HLT configuration and code base

evolves over the years

● alternative approach
● offload part of the GPU-heavy computations

to separate nodes
● increase GPU processing power over time

simply adding more nodes
● leverage high-speed network interconnect

to minimise the extra latecy

other use cases
● ease deployment at HPC sites

● gradual transition to GPU usage,
mixing CPU-only nodes and GPU-heavy
nodes

● use worker nodes with limited local disk
space
or outbound network access

● mix and match jobs with different
parallelism requirements

● multi-threaded “client” communicating with
multiple single-threaded “servers”or vice-
versa

https://creativecommons.org/licenses/by-sa/4.0/

November 27 2024ᵗʰ A. Bocci - Evolving CMSSW into a client-server distributed application 4 / 20

an ambitious goal

● design and implement a distributed application, with support for
● sending and receiving arbitrary collections, including support inter-object references and provenance
● multiple threads and multiple concurrent events (streams)
● multiple senders and receivers per application
● multiple clients and multiple servers with a non-trivial topology
● efficient memory transfers to and from GPUs
● event filtering
● fault tolernce and error recovery

● with minimal impact on the existing code base
● leverage the modular architecture of CMSSW and the Event Data Model approach
● extend the framework capabilities
● avoid rewriting and maintaining a dedicated reimplementation of “remote” algorithms

https://creativecommons.org/licenses/by-sa/4.0/

November 27 2024ᵗʰ A. Bocci - Evolving CMSSW into a client-server distributed application 5 / 20

simplified diagram

□ existing modules

↔ data flow

producer #1

producer #2

producer #3

local source

filter #1

filter #2

output

single application

from

https://creativecommons.org/licenses/by-sa/4.0/

November 27 2024ᵗʰ A. Bocci - Evolving CMSSW into a client-server distributed application 6 / 20

simplified diagram

□ existing modules
■ new modules

↔ data flow
↔ control flow

producer #1

producer #2

producer #3

local source

filter #1

filter #2

output

producer #1

producer #2

producer #3

local source

filter #1

filter #2

output

sender

receiver

receiver

sender

remote
source

remote
controller

single application local “client” remote “server”

tofrom

https://creativecommons.org/licenses/by-sa/4.0/

November 27 2024ᵗʰ A. Bocci - Evolving CMSSW into a client-server distributed application 7 / 20

technology choices

● modular approach under study and evaluation since late 2020
● limited personpower before NGT project
● designed evolved during this year along with the first concrete implementation

– thanks to Prof. Fawaz Alazemi (Kuwait University) and Andrea Valenzuela (CERN)

● choice to use MPI for the prototype
● widely used in HPC (not so much in HEP)
● efficient data movement

– within a single node (shared memory) and over high speed interconnects (InfiniBand, RoCE, etc.)
● support RDMA to and from GPU memory

– demonstrated close-to-local data transfer peroformance (Ali Marafi, ACAT 2022)
● work on fault tolerance integrated in the MPI 4.0 standard

– “User Level Fault Mitigation” available in OpenMPI 5.0

● validate these choices in the coming year(s)
● measure the performance of the modules, library, and network solutions
● evaluate different paradigms like RPC

– Anna Polova will join the project as a technical student in February

https://creativecommons.org/licenses/by-sa/4.0/
https://indico.cern.ch/event/1106990/contributions/5011939/
https://www.mpi-forum.org/mpi-40/
https://www.open-mpi.org/

November 27 2024ᵗʰ A. Bocci - Evolving CMSSW into a client-server distributed application 8 / 20

time line and milestones

Q4 2024
Implementation of a client-server, multithreaded, distributed test application, based on CMSSW,
leveraging high-speed host-to-host or shared memory communication.

Q2 2025
Implementation of a small-scale demonstrator of a full HLT-like application.

Q2 2026
Support for optimal use of remote accelerators, e.g. using RDMA to/from GPU memory

Q4 2026
Support for multiple servers and distributed configurations.

Q4 2027
Compare different approaches to improve the resiliency of the system,
such as server redundancy and client-side failure mitigation strategies.

Q2 2028
Evaluate the performance of different network interconnects and communication protocols.

Q4 2028
Large scale deployment and testing of the whole infrastructure in view of the HL-LHC data-taking in Run 4

https://creativecommons.org/licenses/by-sa/4.0/

November 27 2024ᵗʰ A. Bocci - Evolving CMSSW into a client-server distributed application 9 / 20

time line and milestones

✔ Q4 2024
Implementation of a client-server, multithreaded, distributed test application, based on CMSSW,
leveraging high-speed host-to-host or shared memory communication.

Q2 2025
Implementation of a small-scale demonstrator of a full HLT-like application.

Q2 2026
Support for optimal use of remote accelerators, e.g. using RDMA to/from GPU memory

Q4 2026
Support for multiple servers and distributed configurations.

Q4 2027
Compare different approaches to improve the resiliency of the system,
such as server redundancy and client-side failure mitigation strategies.

Q2 2028
Evaluate the performance of different network interconnects and communication protocols.

Q4 2028
Large scale deployment and testing of the whole infrastructure in view of the HL-LHC data-taking in Run 4

https://creativecommons.org/licenses/by-sa/4.0/

2024 results

November 27 2024ᵗʰ A. Bocci - Evolving CMSSW into a client-server distributed application 11 / 20

2024 results

☑ step 1
● controller/source
● no sender/receiver
● single thread, single stream
● single client, single server

☑ step 2
● send/receive fixed types
● single sender/receiver

☑ step 3
● multiple threads, multiple streams

☑ step 4
● multiple senders, multiple receivers

☑ 2024 demonstrator
● integrate steps 2, 3, 4
● controller/source
● send/receive fixed types
● multiple senders, multiple receivers
● multiple threads, multiple streams
● no support for edm::Ref and similar
● single client, single server

implemented in cms-sw/cmssw#32632

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/cms-sw/cmssw/pull/32632

November 27 2024ᵗʰ A. Bocci - Evolving CMSSW into a client-server distributed application 12 / 20

fully remote processing

● single-sided communication
● send RAW data from one process to another
● full HLT reconstruction in the remote process

● demonstrate controller / follower pattern
● estabilish communication
● synchronise run, luminosity block and event

transitions

● demonstrate data distribution
● single collection type: RAW data
● single sender
● single receiver

raw data

output

raw data
sender

full HLT
processing

on GPUs

raw data
receiver

remote
source

remote
controller

local “client” remote “server”

https://creativecommons.org/licenses/by-sa/4.0/

November 27 2024ᵗʰ A. Bocci - Evolving CMSSW into a client-server distributed application 13 / 20

HLT running over a simple MPI topology
local process
without GPUs

MPI controller

DAQ source,
reading local data

data are sent over MPI
to the remote process

remote process
with one GPU

MPI source

data are received
over MPI, processed,
filtered and stored

https://creativecommons.org/licenses/by-sa/4.0/

November 27 2024ᵗʰ A. Bocci - Evolving CMSSW into a client-server distributed application 14 / 20

prototype of distributed processing

HCAL rechit
reconstruction

HCAL PF
clustering

raw data

output

raw data
receiver

HCAL PF
sender

remote
source

local “client” remote “server”

HCAL rechit
sender

raw data
sender

HCAL rechit
receiver

remote
controller

HCAL PF
receiver

HLT processing
(except HCAL)

● multi-sided communication
● send RAW data from one process to another
● send back reconstructed objects

● demonstrate cooperative processing
● run locally using only the CPU
● offload part of processing to remote GPU node

● demonstrate data distribution
● multiple collection types

– RAW data

– HCAL rechit SoA

– HCAL PF cluster SoA

● multiple senders, multiple receivers

https://creativecommons.org/licenses/by-sa/4.0/

November 27 2024ᵗʰ A. Bocci - Evolving CMSSW into a client-server distributed application 15 / 20

offload to a remote GPU

● ~90% of the HLT runs locally on CPU
● ~10% runs remotly on GPU

https://creativecommons.org/licenses/by-sa/4.0/

November 27 2024ᵗʰ A. Bocci - Evolving CMSSW into a client-server distributed application 16 / 20

a distributed HLT application over MPI
local process
without GPUs

MPI modules

DAQ source,
reading local data

local HLT processing,
except HCAL part

remote process
with one GPU

MPI modules

raw data are
received over MPI

HCAL reconstructed
collections are sent
back over MPI

https://creativecommons.org/licenses/by-sa/4.0/

the road ahead

November 27 2024ᵗʰ A. Bocci - Evolving CMSSW into a client-server distributed application 18 / 20

the road ahead
● 2025 deliverables

● simplify the code base and support send/receive of arbitrary collections
● efficient encoding and decoding of “Structure of Arrays” data types

– bypass ROOT de/serialisation for types with a known layout
– in collaboration with Task 3.1.2 and Task 1.7

● 2026 deliverables
● send data directly from (local) GPU memory to (remote) GPU memory
● non-linear topology with multiple clients and servers

● 2027 deliverables and contractual milestone
● study various fault tolerance approaches
● implementation of a client-server, multithreaded, distributed test application,

based on the CMS software framework CMSSW, leveraging high-speed host-to-host
or shared memory communication

● 2028 deliverables
● study different hardware interconnects and software libraries
● plan for large-scale deployment in Run 4

already in
progress !

long-term goal,
start next year

https://creativecommons.org/licenses/by-sa/4.0/

