# Task 3.3 report "Reduction of the RAW data size for HLT"





**1st Next Generation Trigger technical workshop** 

**Silvio Donato** (INFN and University of Pisa) on behalf of the NGT Task 3.3 team





#### The team

- Silvio Donato (task leader, assistant prof. University of Pisa and INFN)
- Simone Rossi Tisbeni (NGT-CERN doctoral student, University of Bologna and INFN)

• Synergy with "PRE: Partially Reconstructed Event" project PRIN2022BLJJLY:

- Vinaya Krishna (postdoc at University of Pisa)
- Saswati Nandan (postdoc at INFN Pisa)
- Silvio Donato (principal investigator)



Finanziato dall'Unione europea NextGenerationEU











### Outline

- The team
- The goal
- The strategy
- The RAW event size in Run-3
  - The strip RAW' compression in Run-3 pp-collisions
    - ongoing improvements
- The event size in recent Phase-2 simulations
  - Comparison with Run-3 objects
    - Inner tracker
    - Outer tracker
    - HGCal
  - Comparison with HLT-TDR numbers
- Conclusions





### The goal

#### • The Phase-2 event size of CMS is expected to be around 10 MB/event.

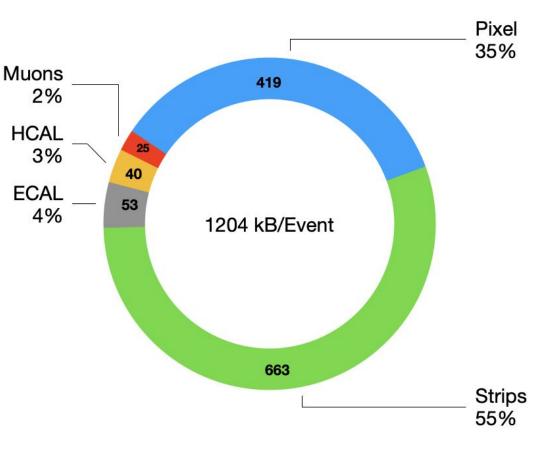
- No way to store all events accepted from the hardware trigger (750 kHz) in raw data format
  - 10 MB/event x 750 kHz = 7.5 TB/s, ie. about 10 EB/year!
- The R<sup>3</sup> project aims to run an offline-like reconstruction on all events accepted by the hardware trigger (up to 750 kHz).
- The goal of Task 3.3 is to increase the maximum trigger available by reducing the size of events saved by CMS





#### The strategy

#### • NGT 3.3 will reduce the event size in three different ways and compression factors.

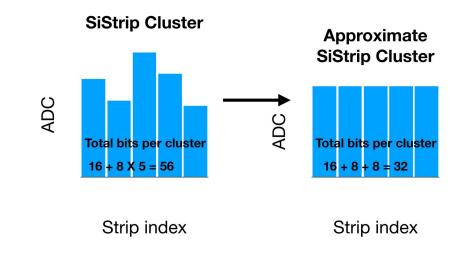

- Lossy compression, replacing raw data with high-level physics objects (eg. muons, electrons, jets, tracks?),
  - evolution of our current **scouting** data format,
  - very strong compression (around x100), necessary to store all 750 kHz,
    - limited possibility to re-reconstruct objects with newer algorithm or calibration.
- Lossy compression, replacing raw data with low-level physics objects (eg. replacing tracker or calorimeter raw data with reco's hit positions and energies)
  - extension of RAW' currently used in HIon collisions in CMS,
  - limited compression (below x10),
    - will **allow** to **re-reconstruct** high-level objects with newer algorithm or calibration
- Lossless compression:
  - testing new compression algorithms;
  - using physics objects (eg. tracks) to improve the raw data compression (see backup).
- R<sup>3</sup> is key in all methods to achieve good compression with high quality physics objects





#### The RAW event size in Run-3

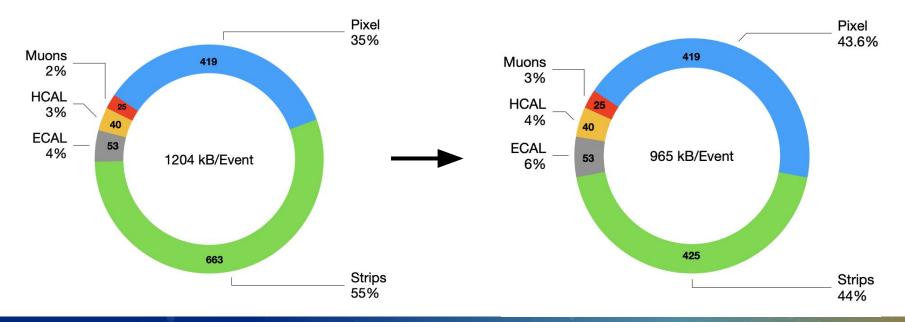
- Usage of a specific Front-End Detector (FED) selector to measure the event size of each detector.
- Data from <u>Muon dataset</u> pp collisions pileup~60 (run=382216, fill=9804)
- Total compressed event size: 1204 kB
  - $\circ \quad \underline{Strips \ detector} \rightarrow \underline{55\%}$
  - $\circ~$  Pixel detector  $\rightarrow$  35%
  - $\circ$  ECAL preshower  $\rightarrow 4\%$
  - $\circ$  All other detector < 10%








### The RAW' idea: strip data compression


- The strip detector takes the largest fraction of the event size.
- The <u>RAW' rationale</u> is to replace
  - the ADC amplitude numbers (8 bits x width)
- with
  - the average charge (8 bits) +
  - the length (8 bits) +
  - barycenter (16 bits)
- RAW' compression used in PbPb collisions
  - online since 2023
- Very important for HIon collisions as DAQ bandwidth is the bottleneck of the trigger rate





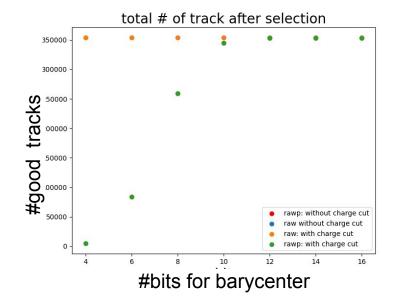
#### The RAW' in Run-3 pp collisions

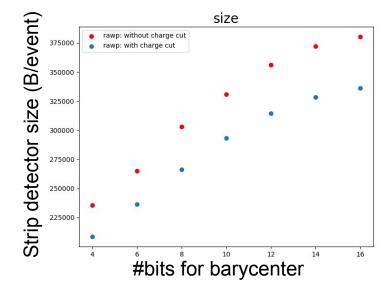
- Here the measurement of RAW' in pp collisions:
  - Strip detector from 663 kB (55%) to 425 kB (44%) [-35.8%]
  - Total event size from 1204 kB to 965 kB/event [-20%]
- Strip detector is still the detector with the largest event size
  - Focus in the **further compression of strip** in RAW'








### **Compressing further RAW' (Run-3)**

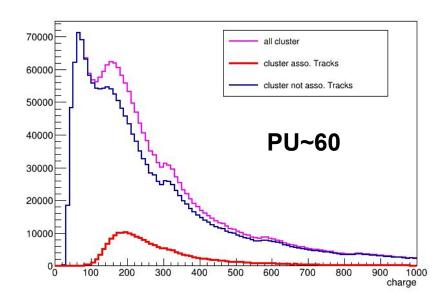

• Optimization of the number of bits used in

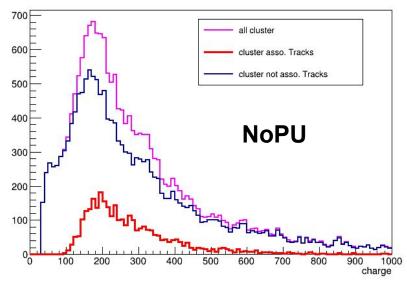
- barycenter
- $\circ$  charge
- $\circ$  width

#### • Removal of strip clusters with low charge

- typically out-of-time pileup or noise
- Example: 12-bit for barycenter + charge cut
  - ~100% track efficiency
    - **Track selection:** normalized  $\chi^2 < 2$ ,  $|p^T_{error} / p^T| < 0.10$ , # of hits > 11
  - $\circ~$  17% in strip event size








### **Compressing further RAW' (Run-3)**

- Only ~10% on strip clusters are associated with any reconstructed track!
  - 90% of clusters have no associated tracks
- The source of 90% of clusters is under study, some origins are:
  - clusters not passing quality criteria
  - noise and out-of-time pileup
  - $\circ$  track inefficiency  $\rightarrow$  no associated clusters
    - nuclear interaction
    - esp. for very soft tracks (loopers)
  - caveat: clusters excluded in tracking appears as "not associated" by design (eg. low charge clusters)
- Investigating possible ways to remove "useless" clusters to reduce strip event size.







#### The Phase-2 upgrade

#### • New detectors

- High-GranularityCalorimeter
- MIP Timing Detector
- More sophisticated
   L1 trigger
- Larger not only because of the larger pileup but also for new detector with higher complexity

#### **Our Future Unprecedented Beauty - A Bold Upgrade** L1-Trigger **DAQ & High-Level Trigger** CMS CMS **Barrel Calorimeters** CMS https://cds.cern.ch/record/2714892 https://cds.cern.ch/record/2759072 https://cds.cern.ch/record/2283187 Tracks in L1-Trigger at 40 MHz Full optical readout ECAL single crystal granularity at L1 trigger Particle Flow selection Heterogenous architecture with precise timing for e/y at 30 GeV 750 kHz L1 output 60 TB/s event network ECAL and HCAL new Back-End boards 40 MHz data scouting 7.5 kHz HLT output The Phase-2 Upgrade CMS Barrel Calor Muon systems CMS CMS https://cds.cern.ch/record/2283189 DT & CSC new FE/BE readout **Calorimeter Endcap** RPC back-end electronics New GEM/RPC 1.6 < n < 2.4</li> https://cds.cern.ch/record/2293646 Extended coverage to η ≃ 3 3D showers and precise timing The Phase-2 Upgrade of the CMS Muon Detectors TECHNICAL DESIGN REPORT Si, Scint+SiPM in Pb/W-SS Beam Radiation Instr. and Luminosity CMS Tracker CMS CMS http://cds.cern.ch/record/2759074 **MIP Timing Detector** https://cds.cern.ch/record/2272264 Beam abort & timing Si-Strip and Pixels increased granularity https://cds.cern.ch/record/2667167 Beam-induced background Design for tracking in L1-Trigger Precision timing with: Bunch-by-bunch luminosity: Extended coverage to n ~ 3.8 Barrel layer: Crystals + SiPMs 1% offline, 2% online Endcap layer: Neutron and mixed-field radiation Low Gain Avalanche Diodes monitors





#### The RAW event size in Phase-2

- The RAW event content is not yet available for Phase-2
  - "raw" in current <u>phase-2 simulations</u> with pileup 200 is only 300 kB/event instead of ~10MB → very few detector are included
- The simulated digitalization of the detector (simDigi) have been used to estimate the raw detector size.
- Run-3 simulations have been used as a test of the goodness of the estimate
- <u>The low-level reconstructed objects (detector local reconstruction) have</u> been used as an estimate of a possible compressing in the RAW' fashion.
- In the next slides:
  - <u>Run-3</u>: TTbar <u>sample</u> with pileup 60 (2024 conditions)
  - Phase-2: TTbar sample with pileup 200 (2027 conditions)





#### The pixel detector (Run-3)

- RAW detector size [per event compressed]: 286 kB
- All 'simSiPixelDigis' objects: 736 kB
  - excluding PixelDigiSimLinkedmDetSetVector: <u>279 kB</u>
- All 'siPixelDigis' objects: 281 kB
- Low-level reconstructed objects:
  - siPixelClusters: 286 kB
    - siPixelClusters <u>contains all pixels ADC counts</u>
  - siPixelRecHits: 48 kB
    - potential large compression saving recHits instead of raw (-83%)





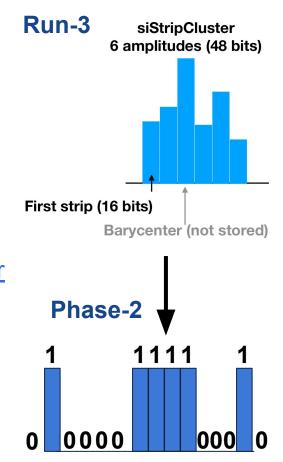
### The inner tracker (Phase-2)

- No inner tracker RAW in Phase-2 yet
- simSiPixelDigis: 6920 kB
  - excluding PixelDigiSimLinkedmDetSetVector: 1357 kB
- No siPixelDigis yet
- Low-level reconstructed objects:
  - siPixelRecHits: 142 kB
    - potential large compression saving recHits instead of raw (-89%)





#### The strip detector (Run-3)


- RAW detector size [per event compressed]: 731 kB
- All 'simSiStripDigis' objects: 4582 kB
  - excluding StripDigiSimLinkedmDetSetVector: <u>849 kB</u>
- All siStripDigis objects: 850 kB
- Low-level reconstructed objects:
  - siStripClusters: 727 kB
    - siStripClusters contains all strips ADC counts
  - all siStripMatchedRecHits objects: 366 kB
    - potential compression saving recHits instead of raw (-50%) similar to our current RAW' compression





#### The outer tracker (Phase-2)

- No outer tracker RAW in Phase-2 yet
- This collection is currently used in the inner tracker simulation:
  - mix, Tracker: 699 kB (pileup mixing module)
- No siStripDigis yet
- Low-level reconstructed objects:
  - siPhase2Clusters: 587 kB
- Note: in Phase-2 the outer tracker will be fully digitalized:
  - only 0 or 1 per strip, no charge deposit, barycenter is semi-integer number
  - $\circ$   $\;$  this explains the reason of
    - siPhase2Clusters size is very close to siPhase2Clusters (size ratio 84%)
    - siPhase2Clusters size at PU200 (587 kB) is smaller than Run-3 siStripClusters at PU60 (727 kB)!







### The ECAL (Run-3 and Phase-2)

#### • ECAL: link

- RAW: <mark>37 kB</mark> (only Run-3)
- 'simEcalDigis': <mark>36 kB</mark> (Run-3) vs <mark>65 kB</mark> (Phase-2)
- 'ecalDigis' (no trigger primitives): 49 kB (Run-3) vs 70 kB (Phase-2)
- Larger ECAL size in Phase-2 because of timing?
- Low-level reconstructed objects:
  - 'ecalMultiFitUncalibRecHit' 110 kB (Run-3) vs 275 kB (Phase-2)
  - 'ecalRecHit' <mark>38 kB</mark> (Run-3) vs <mark>81 kB</mark> (Phase-2)
    - 'ecalDetailedTimeRecHit' 89 kB (only Phase-2)
    - 'reducedEcalRecHits' 43.6 kB (Run-3) vs 30.9 kB (Phase-2)
      - 'reducedEcalRecHitsEB' 17.5 kB (Run-3) vs 30.7 kB (Phase-2)
  - 'particleFlowClusterECAL' 16 kB (Run-3) vs 22 kB (Phase-2)





### The HCAL (Run-3 and Phase-2)

#### • HCAL: link

- RAW: 142 kB (only Run-3, extrapolated<sup>(\*)</sup>)
- 'simHcalDigis': 134 kB (Run-3) vs 80 kB (Phase-2)
- 'hcalDigis' (no trigger primitives): 163 kB (Run-3) vs 96 kB (Phase-2)
- Smaller HCAL size in Phase-2 because of HGCal (no endcap)
- Low-level reconstructed objects:
  - 'reducedHcalRecHits' 12.0 kB (Run-3) vs 10.1 kB (Phase-2)
  - 'particleFlowClusterHCAL' 187 kB (Run-3) vs 3.3 kB (Phase-2)

<sup>(\*)</sup> FED selector crashes when using HCAL FED. HCAL RAW size computed as total RAW minus all detectors excepted HCAL







### The HGCal (Phase-2)

- No HGCal RAW in Phase-2 yet
- All 'simHGCalUnsuppressedDigis' objects: 2685 kB
- 'hgcalDigis': 2685 kB
- Low-level reconstructed objects:
  - all 'HGCalUncalibRecHit' —> 1114 kB
  - all 'HGCalRecHit' —> 1626 kB
  - 'particleFlowClusterHGCalFromSimCl' objects: 3162 kB
  - 'particleFlowClusterHGCal' objects: 79 kB

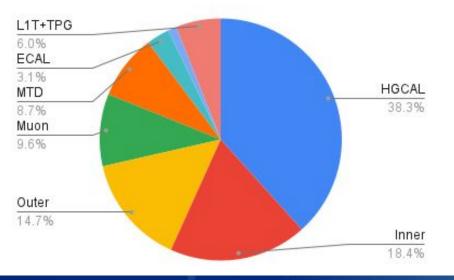




### **Event size summary (Phase-2)**

- HGCal is the largest detector (2.6 MB/event)
  - saving uncalibrated recHits 1.1 MB/event (-59%)
- The inner tracker is the second largest detector (1.4 MB/event)
  - saving pixel recHits could reduce the size down to 142 kB/event (-89%)

a similar reduction is found using Run-3 data


- The size of the outer tracker with PU 200 is smaller (587 kB) than the strip detector with PU 60 because of the digitalization of the strip detector
  - almost no compression using a RAW' approach
    - might be still possible to apply a cleaning of "useless" strip clusters to reduce the size
- Caveat: the definition of new data formats (eg. 'HGCalUncalibRecHit') are still in progress and their size might change in the near future.





### **Event size summary from HLT TDR**

- Uncompressed detector size from **Phase-2** <u>HLT TDR</u> (2021)
  - Some changes wrt recent Phase-2 simulation
    - overall picture is matching
    - part of differences because of compression
      - eg. ECAL compression 300 kB  $\rightarrow$  70 kB
      - still some difference with latest number
        - eg. ECAL 300 kB vs 600 kB
    - some important detectors to be computed
      - MTD, CSC, DT, L1T+HGCal TPG



| Subsystem          | Size (MB/ | Size (MB/event) |  |
|--------------------|-----------|-----------------|--|
| Inner Tracker      | 1.44      | 1.44            |  |
| Outer Tracker - PS | 0.72      | 1.15            |  |
| Outer Tracker - 2S | 0.43      |                 |  |
| MIP Timing Det BTL | 0.24      | 0.68            |  |
| MIP Timing Det ETL | 0.44      |                 |  |
| ECAL Barrel        | 0.60      | 0.60            |  |
| HCAL Barrel        | 0.24      | 0.33            |  |
| HCAL HO            | 0.03      |                 |  |
| HCAL HF            | 0.06      |                 |  |
| HGCAL              | 3.00      | 3.00            |  |
| Muon DT            | 0.15      | 0.76            |  |
| Muon CSC           | 0.47      |                 |  |
| Muon GEM - GE1/1   | 0.00      |                 |  |
| Muon GEM - GE2/1   | 0.00      |                 |  |
| Muon GEM - ME0     | 0.12      |                 |  |
| Muon RPC           | 0.01      |                 |  |
| Total              | 8.42      | 7.96            |  |



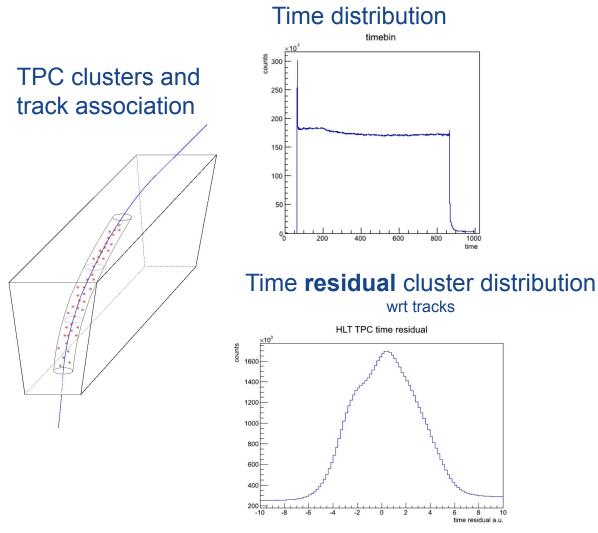


#### Conclusions

- The replacement of raw data with low-level reconstructed objects is already used in PbPb collisions for the strip detector (RAW').
  - The usage of strip RAW' compression to Run-3 pp collisions data would decrease the total event size of -30%
    - studies are ongoing to enhance the compression factor
- The Phase-2 event size has been studied using recent simulations.
- A possible compression of biggest detectors using low-level variables gives
  - $\circ~$  HGCal  $\rightarrow$  uncalibrated recHits is 59% of smaller than raw data
  - Inner tracker  $\rightarrow$  siPixelRecHits would reduce the data size of 89%
  - Outer tracker  $\rightarrow$  the event size is already small because of the digitizer (600 kB/event)
    - further reduction might come from the cleaning of fake tracker clusters



# BackUp

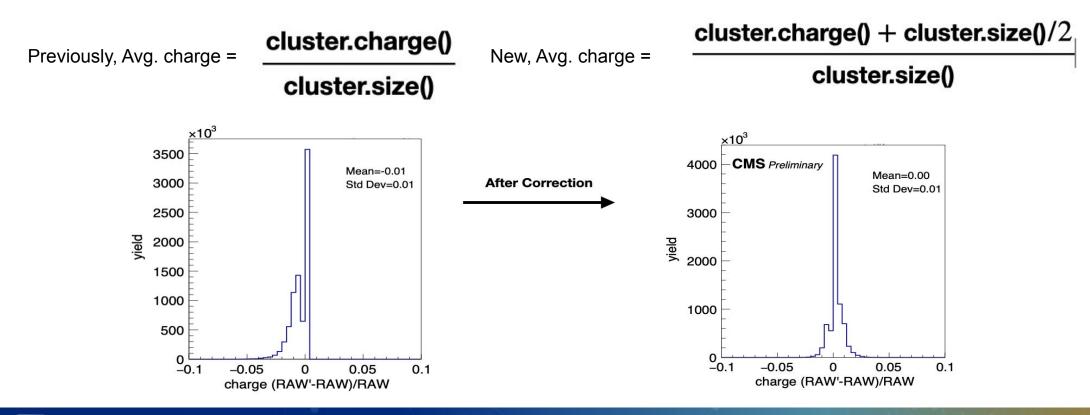





#### J.Phys.: Conf. Ser. 396 012043

#### **Lossless compression using tracks**

- ALICE Time Projection Chamber (TPC) data is compressed online using track information
- The compression is lossless: clusters variable are replaced with residual variable wrt ass. tracks
- Replacing flat distribution with "peaked" distribution allows for a stronger Huffman compression
- A similar idea might be applied to CMS outer tracker, especially for 'looper' tracks
- Reference: <u>J.Phys.: Conf. Ser. 396 012043</u>

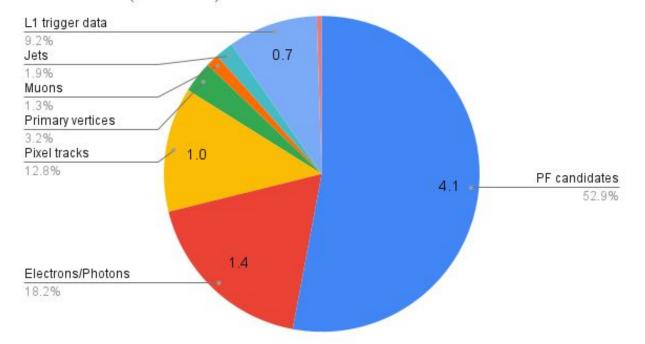





### **Cluster charge Fix**

The PR for approximated SiStripCluster made by HION group.

We redefined the average charge, which returns to correct round off value.






## **Scouting - Event Size (2023)**

| Objects           | Size (kB/ev) |
|-------------------|--------------|
| PF candidates     | 4.1          |
| Electrons/Photons | 1.4          |
| Pixel tracks      | 1.0          |
| Primary vertices  | 0.3          |
| Muons             | 0.1          |
| Jets              | 0.1          |
| L1 trigger data   | 0.7          |
| HLT trigger bits  | 0.0          |
| TOTAL             | 7.7          |

Event Size (kB/event)



pileup=60, lumi= fill=9049, run=370355, ls=73

Nex Gen

Next Generation Triggers

- ~135 times smaller than the full RAW event content (1.06 MB/event)
- 20 kHz @ 7.7 kB/event are "equivalent" to ~150 Hz @ 1.06 MB/event (full RAW )



#### The milestones

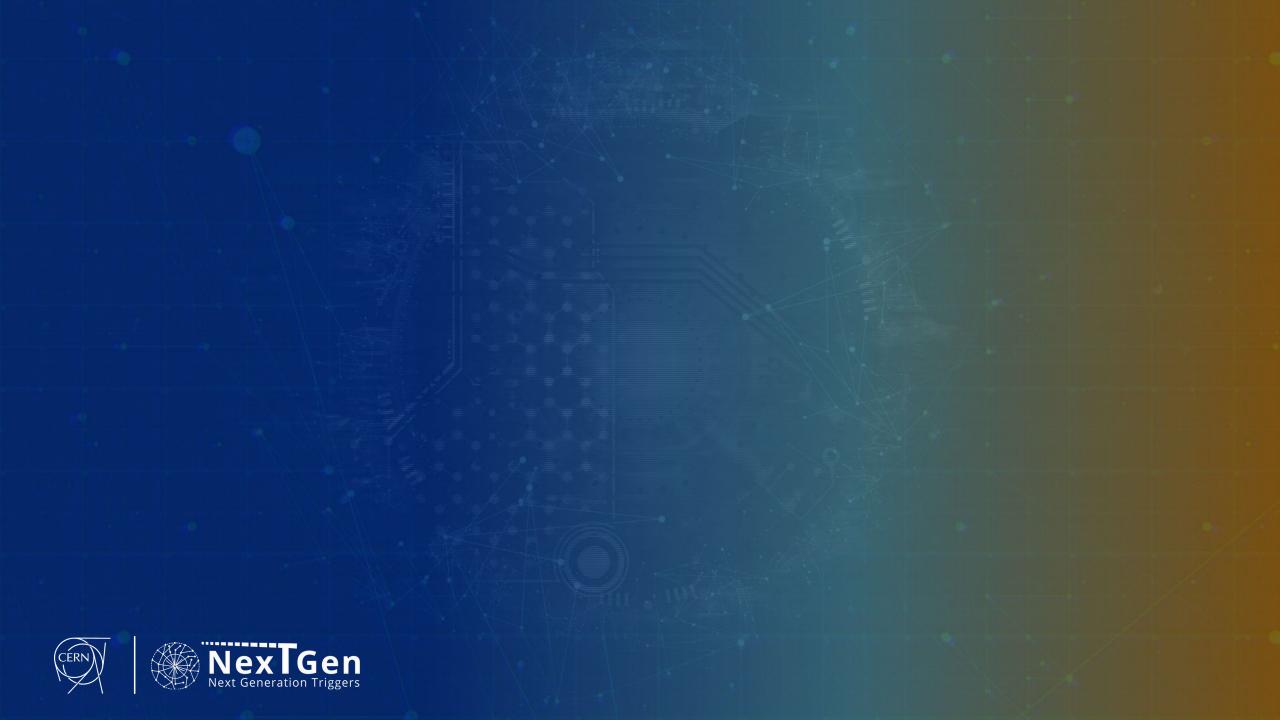
#### • The first year milestones:

- Production of a report illustrating the impact in terms of RAW data size coming from each detector, and suggesting the major area of interest/intervention.
- <u>Report on the impact of RAW data compression and of their replacement with</u> <u>low-level reconstructed quantities (RAW)</u> (contractual milestone)





#### **The milestones**


#### • The <u>contractual</u> milestones

- 1 year: <u>Report on the impact of RAW data compression and of their replacement with low-level reconstructed</u> <u>quantities (RAW')</u>
- **3 year**: A comparative analysis of the different data reduction approaches and their impact on the accuracy of the physics reconstruction is published.

#### • The detailed milestones

- 12 m (was 6 m): Production of a report illustrating the impact in terms of RAW data size coming from each detector, and suggesting the major area of interest/intervention.
- 18 m: Assessment of two different approaches to data compression: lossless compression on accelerators, and replacement
  of part of the RAW data with low-level reconstructed quantities (RAW').
- **30 m**: Implementation of the most promising solutions replacing part of the RAW data with low-level reconstructed quantities in the CMS reconstruction software.
- **42 m**: Assessment of the trade-off between the data reduction and the impact on the high-level physics reconstruction, as part of the RAW data are replaced by high-level reconstruction objects.
- **54 m**: Implementation of the most promising solutions replacing part of the RAW data with high-level reconstructed quantities in the CMS reconstruction software.
- **60 m**: Large scale deployment and testing of the whole infrastructure in view of the readiness for the 2029 HL-LHC data-taking.



