
CERN Tape Scheduling Systems
(walk through history and discussion)

Jaroslav Guenther (IT-SD-TAB)
31/S-027
14.05.2024

1

SHIFT Tape Scheduling History
(~1990) SHIFT

LEP experiments owned
• tape drives for DAQ tapes

• trucks moved them to IT Valut
• namespace catalogue

• it had the tape info per file !
• based inherently on IBM 3480 VIDs !
• VID vs Run.Event file map

8 years later: STK robot libraries

CERN IT
• migration to new denser media → new tape

identifier (VID.FSEQ)
• added Tape Management System (TMS):

• first use of "namespace" to map old to new
VIDs (experiment catalogue bridge)

• enabled repack & writing to new tapes

• Challenges:
2

scheduling mostly done
by end users !
(manually 24/7)

Jaroslav Guenther | CERN Tape Scheduling Systems 14 May 2024

https://tapeoperations.docs.cern.ch/legacy/shift/#history-of-shift-and-castor

CASTOR Tape Scheduling History
next ~23 years: CASTOR (ref.: 2007, 2015)

New LHC experiments:
• agreed that CERN IT

maintains the namespace
• Implications of maintenance-free

decision underestimated

CERN IT introduced
• CASTOR namespace & disk staging area
• scheduling = = 3 daemons deployed centrally

• Stager = FIFO queueing from NS
• disk cache management (& UI)
• req. mount while ignoring tape state &

location (→ ops issues)
• VDQM = requests to tape drives

• ignored file-level info
• danger of disjoint placement of related

files across different tapes
• VMGR (previously TMS) = tape choice

Jaroslav Guenther | CERN Tape Scheduling Systems 314 May 2024

https://tapeoperations.docs.cern.ch/legacy/shift/#history-of-shift-and-castor
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4367985
https://cds.cern.ch/record/2134555/files/042007.pdf?subformat=pdfa&version=1
https://eoscta.docs.cern.ch/castor/castor_tape_scheduling_responsibilities/

CASTOR Operational Experience
Experiments
• lost control over: file location on

tape and scheduling

• additional files transfers needed:
• staging area → AFS/EOS

(instead of tape mainframe →
analysis machines)

• no tape-targeted file collocation
→ less efficient readout:
• repack exercise makes file

spread worse
(still the case today)

Mitigation Strategies
• experiments helped the scheduler by

• sending large file lists as requests and ordering
these by tape (e.g. ATLAS Tier-0 Ops Run I & II)

• Implemented concepts of
• TapePool per VO
• StagerClass (to keep files separate)
• inherent FIFO creation time collocation

• Operational oversight
• VO fair share
• priority management (Stager prone to use busy

lib instead of idle one; artificially imposing # tape
drives to be used by supply pool logic; ... etc.)

4Jaroslav Guenther | CERN Tape Scheduling Systems 14 May 2024

CASTOR Limitations and CTA Implementation

CASTOR blockers:
• memory resident namespace

did not scale
• disk resource management

offloaded to LSF scheduler

• centralised scheduling struggled with load

• Stager queueing into VDQM
"blind" of phys. lib/drive state
suboptimal resource management

• ... unmaintainable code base etc.

CTA implementation:
• EOS namespace & disk buffer management

• disk throughput shaping
via VO dedicated buffers per use-case

• refactored the code into separate
multi-threaded distributed daemons !

• removed centralised Stager:
→ scheduling at mount time

(2022 - present) CTA (ref.: 2017, 2021)

5Jaroslav Guenther | CERN Tape Scheduling Systems 14 May 2024

https://www.researchgate.net/publication/221397128_Storage_Resource_Sharing_with_CASTOR
https://iopscience.iop.org/article/10.1088/1742-6596/898/6/062013/pdf
https://www.epj-conferences.org/articles/epjconf/pdf/2021/05/epjconf_chep2021_02037.pdf

CTA Scheduler (WIP / TBD)

What about ...
good ideas from CASTOR 2007 ?

Automatic assignment of drives per VO
• "proper monitoring of the disk status which

must be fed to the scheduling system"

[... add on ...]

File Collocation
• Experiments demand efficient readout

• not all care about namespace anymore !
• CTA "smart" writing to tape:

• natural pushback from experiments to control
scheduling aka "know where their file is"

• archival metadata hints
(suggesting what does belong together)
note: we have StorageClass
(= what shall be kept separate)

Repack vs Production
• separating scheduler backend

and separate drive allocation in the pipeline

6Jaroslav Guenther | CERN Tape Scheduling Systems 14 May 2024

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4367985&tag=1

CTA Receiving a Request

user

EOSCTA disk buffer
CTA front-end server

daemon: cta-frontend
XrdSsi / gRPC service:
listening WFE

synchronous
call per file

Scheduler backend
ObjectStore
Postgres DB

request read
write file close

insert a file
transfer job info

archiveFileID
/ tape VID

classes:
• Scheduler

• SchedulerDatabase
• OStoreDB
• rdbms/RelationalDB

job = one file transfer

EOS MGM
xrootd thread:
WorkFlow Engineack.

Transient request data and their changes

7Jaroslav Guenther | CERN Tape Scheduling Systems 14 May 2024

CTA Tape Server polling 1/2
CTA tape server (TS)

Tape Drives (TD)
process: DriveProcess
 (child DriveHandler) . . .

DataTransferSession forked for a free drive (UP)
• tries to get new (/its own) Mount
• Mount = drive assignment to tape for set of jobs
• calls Scheduler → getNextMount[-DryRun]()

• SchedulerDatabase → fetchMountInfo()

daemon: 1 taped
 per tape drive

job = one file transfer

Each taped looks at all jobs for all drives
 to get all (existing/hypothetical) Mounts
 + iterates through → match drive with tape and job set
 (1st w/o global lock [-DryRun] + 2nd time with)

improve perf if needed
• look up only TD relevant info
• lock only what needs to be

locked

8Jaroslav Guenther | CERN Tape Scheduling Systems 14 May 2024

CTA Tape Server polling 2/2
DataTransferSession
• getting Mounts by polling Scheduler DB and Catalogue

• Scheduler → getNextMount[-DryRun]()

Catalogue
• Mount Policy
• Drive Status
• etc. ...

Scheduler DB
• for all jobs

/ queues

ExistingMounts

PotentialMounts

Scheduler.
sortAndGetTapesForMountInfo()
match drive with
[VO, priority, mount type
Archive/Retrieve/..., tape VID,
request age, job summary statistics]

SchedulerDatabase
updates
mountID, VID per job

TapeMount

tape file namespace and permanent
system data and its state changes

9Jaroslav Guenther | CERN Tape Scheduling Systems 14 May 2024

CTA Tape Drive with Mount
DataTransferSession
• calls executeWrite/Read(TapeMount)

• several threads are spawned taking care of:
• mounting the tape
• polling Scheduler DB for job/queue

batches
• inserting the jobs to for the execution
• the R/W from/to memory/tape/disk buffer
• MigrationReportPacker thread reporting

back to CTA disk buffer (EOS)
(TBD for PGSCHED)

Consistency & Error Handling (TBD for PGSCHED)
• TapeDaemon/MaintenanceHandler x-check job "heartbeat" in Scheduler DB
• Scheduler DB "view" on active [VID + mountID] → DriveState check (in the Catalogue) ?

aka object ownership
concept in ObjectStore

10Jaroslav Guenther | CERN Tape Scheduling Systems

threads handle
work of any tape drive

14 May 2024

CTA Scheduler ObjectStore
Implementation

• Protobuf serialised objects in key/value ObjectStore
• designed for performant FIFO queue
• full locking support dev required
• manages "backpointers" and dangling pointers
• scales well (despite > storage round trips than DB)
• multi-threaded interface to ObjectStore

Intentional complex code development

• inherently ensures high performance and scaling
(re-inventing a wheel of the DB logic)

• requires extensive continuous learning effort
• challenge for small, high-turnover team at CERN !

11Jaroslav Guenther | CERN Tape Scheduling Systems 14 May 2024

CTA Scheduler Relational DB
Implementation

• workflow oriented tables, views, sequences
• file transfer jobs (Archive/Retrieve/Report/...)

• inherently uses DB features
• facilitates any job ordering (FIFO/non-FIFO)

locking & MVCC, indexing (+sync), B trees, etc.
• connection pools from our rdbms wrapper layer
• currently single threaded interface to DB

Intentional straightforward code development

• ensures high performance IF DB features exploited smartly
(e.g. do not ask to count rows, write pop/delete counters)

• requires optimisation efforts per use-case
• relies on the dev diligence with DB queries and DB admin tuning

12Jaroslav Guenther | CERN Tape Scheduling Systems 14 May 2024

CTA Scheduling Operations last year
ObjectStore Experience

• fire-fighting
• 5 high priority dev tickets created in the last year

• object deletion #309
• empty shard handling #500
• infinite loops #602
• locking issues #460
• repack exhausting OStore resources #573

• challenges
• non-FIFO priority queues
• object structure ("schema") updates
• CTA Scheduler code logic not easy to extend/modify

tailored to ObjectStore backend structure (handling object dependencies)

Relational DB

13Jaroslav Guenther | CERN Tape Scheduling Systems 14 May 2024

https://gitlab.cern.ch/cta/CTA/-/issues/309
https://gitlab.cern.ch/cta/CTA/-/issues/500
https://gitlab.cern.ch/cta/CTA/-/issues/602
https://gitlab.cern.ch/cta/CTA/-/issues/460
https://gitlab.cern.ch/cta/CTA/-/issues/573

CTA Request Ingestion

ObjectStore
• summary objects including

regularly updated counters

• locking + multi-threaded access

• EOS MGM → cta-frontend ingestion
one by one

Each taped looks at all jobs for all drives
 to get all (existing/hypothetical) Mounts
 (+ 1st w/o global lock (DryRun) 2nd time with)

Relational DB
• table views and counters

(counters to be implemented if needed,
 we can avoid counting rows in queries)

• MVCC, explicit table/row locks, advisory locks
(more about this later ...)

 smart locking might save us the DryRun
• idea of bulk inserts if needed

(hold set of WFE requests until all in DB)

14Jaroslav Guenther | CERN Tape Scheduling Systems 14 May 2024

Postgres DB Management Challenges
MVCC (Multi-Version Concurrency Control)
• consistent "snapshot" views
• keeps all row versions until the oldest active

transaction or next automatic vacuuming

Power cut & Recovery
• Incomplete transactions and vacuuming may cause

long lockdowns (~1 hour) to replay WAL
• risk of data inconsistency or corruption, prevention

DBOD
• ideal for performance testing, realistic latency (RTT)
• ensure SSDs are used to avoid random access issues
& beware of implicit transactions without auto-commit
 keeping all history !

PostgreSQL config options:

Write-Ahead Log (WAL) settings

wal_level = replica
synchronous_commit = on
wal_sync_method = fsync

Checkpoints

checkpoint_timeout = 5min
checkpoint_completion_target = 0.7
max_wal_size = 1GB

Point-in-Time Recovery

archive_mode = on
archive_command = 'cp %p /path/to/archive/%f'

Streaming Replication

wal_level = replica
max_wal_senders = 5
wal_keep_segments = 32

Autovacuum (for MVCC cleanup)

autovacuum = on
autovacuum_naptime = 1min
autovacuum_vacuum_threshold = 50
autovacuum_analyze_threshold = 50

... etc.

15Jaroslav Guenther | CERN Tape Scheduling Systems 14 May 2024

Management of Completed Job Records
Vacuuming
• table scan + version replay + row deletion + reindexing
• gradually reclaims disk space
• slower, can lock large tables (especially: VACUUM FULL)

Double Buffering + Truncate Table
• use two identical tables, switch between them
• avoids extended lock periods during maintenance
• consistent data access
• Truncate obsolete table:

• no table scan or history replay checks
• fast row removal
• immediately reclaims disk space

 TO BE MEASURED !

16Jaroslav Guenther | CERN Tape Scheduling Systems 14 May 2024

https://www.postgresql.org/docs/current/sql-truncate.html

Tape Drive Efficiency and Data Integrity
Tape Free Space
• vendor tape raw capacity understated

• by 1-5%, ~450 GB (?), stable over time or decreasing ?
• tape drive writes until hitting tape end !

• flush tape writes in bunches of 200 files / ~32 GB (hard-coded)
• last incomplete batch → failure; time spent writing today ?

• cost-effective (tape is cheap and drives fast today)
• "waste" max space and time writing 32 GB per tape << extra free space

Tape Head Position Check
• there is a SCSI command to query tape drive position

• avoids unnecessary flushes (Eric's idea)
• IBM's approval needed to confirm read head position

is indicative of what the write head wrote !

Fine-tuning not worth
the effort today !

summer student study ?

17Jaroslav Guenther | CERN Tape Scheduling Systems 14 May 2024

Thank you for your attention

18Jaroslav Guenther | CERN Tape Scheduling Systems 14 May 2024

... and your help !

home.cern

