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Thomson Reuters

What do we do?

Thomson Reuters is the most trusted provider of

essential news, information, and tools for

professionals in the legal, tax, accounting, Meadquarters
. o Toronto, Canada

compliance, government, and media markets.

Our customers rely on us to deliver the intelligence,
technology, and human expertise they need to find

trusted answers that inform their most important
decisions.

€3 Operations in 100+ countries &% 25,000+ employees
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Thomson Reuters

Research platforms, legal software,
Who do we he[p? I l l I .......... o @ and information services, to law

firms, corporate legal departments,
and government agencies

News and media division

Reuters News Platform
Tax & Accounting

Tax and accounting,
risk management,

regulatory compliance, ‘ ‘
and business Print solutions

intelligence Corporates

Global Print *+*% Thomson
@3  Adrian Alan Pol %" Reuters™



KNOWLEDGE TRANSFER WORKSHOP

Thomson Reuters Labs”™

Al at Thomson Reuters

30+ Years of Al at Thomson Reuters. FUNCTIONAL BUSINESS / PROBLEM-

. L SKILLS SOLVING SKILLS
Al Applied Research Scientists -

Thomson Reuters Labs™ is the innovation and Al algorithm development

ap?plled research arm of Thomson Reuters, . Al Applied Research Engineers

with almost 200 talented colleagues operating End-to-end Al/ML Lifecycle
management

globally.

. . . . Human-Centered Al Design
Through rapid prototyping of solutions and continuous Al Experience Strategy, Research

. . . & Design
knowledge sharing, we support our organization and
customers with the understanding and application of
new technologies to their businesses.

Program Leads

) Exploratory Al Problem-Solving
We work collaboratively across our core customer

segments to identify, de-risk, and activate future-ready
opportunities in Al, machine learning, data science and
emerging technologies.

Business & Customer Engagement
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Thomson Reuters Labs”™

Our Al principles

Thomson Reuters has adopted the following principles to promote trustworthiness
in our continuous design, development, and deployment of artificial intelligence:

Safety
and 1

. That Thomson Reuters will prioritize safety, security, and privacy throughout
e the design, development and deployment of our Al products and services.

2. That Thomson Reuters will strive to maintain a human-centric approach, and
: will strive to design, develop and deploy Al products and services that treat
Y raimess people fairly.

3. That Thomson Reuters aims to design, develop and deploy Al products and
services that are reliable and that help empower people to make efficient,
informed, and socially beneficial decisions.

Accountability

4. That Thomson Reuters will maintain appropriate accountability measures for
our Al products and services.

5. That Thomson Reuters will implement practices intended to make the use of Al
in our products and services interpretable.

Explainability

LX)
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Prototyping at TR Labs™
Proof-of-concept average duration of six months

How was the data collected? Is it of
high quality? Is there any bias?

BEST
OPPORTUNITIES

GOOD

DISCOVERY
PHASE

IDEAS
CAPTURED

RESEARCH & DEVELOP

PRIORITIZED PHASE

REFINE HYPOTHESIS,
BEGIN BUILDING
SOLUTION

PRIORITIZE, ASSIGN &
ALLOCATE RESOURCES,
CREATE HYPOTHESIS

TEST ASSUMPTIONS,
ASESS DATA QUALITY
& ACCESS

ENSURE ALIGNMENT
WITH STRATEGY

Should we even be dfering this service?
Who will be interactipg with the system?
What is the impact of a wrong Al
solution?

Start with the end user
A design thinking approach

Define the problem
What is the hypothesis we want to test?

Who is going to use this and how can Do we have what we need?

2
we make them more successful” What does success look like?

06 Adrian Alan Pol

Reliable and robust model:
monitoring and explainability.

DELIVER

s COMPLETE

ACTIVE USE IN
PRODUCTION

SCALE SOLUTION, MAKE
PRODUCTION READY

Build and deliver
What is the minimum viable solution?

Constant iteration and co-creation
involving end-users
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Prototyping at TR Labs™

Types of problems

e7

Automating legal documents, contracts, e
and tax reports generation. e Answering

Topic

Summarizing complex legal and financial Classification Modelling
documents Information
Extraction &
Enhancing information retrieval. 1ageing
Text
Automating tax research and tax @ Generation or - M Search
calculation.

@ Typeahead DAQE%E?%
Customizing legal and tax information
for each client. 2
and many more

. %o
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Prototyping at TR Labs™

Impact and feasibility of the challenges

A PRESCRIPTIVE

LEGAL STRATEGY  J What should | do?
PLANNING
SUMMARIZATION I PREDICTIVE
/ What will happen?
2/ CONTRACT
PREDICT ANALYSIS
OUTCOMES / DIAGNOSTIC
/7 Why did it
happen?
Ifxggc'r ~ “  MONITOR i
LEGAL PREDICT - TRENDS
STATISTICS BILLING -
e e e o e mm - —— DESCRIPTIVE
m— - CONTRACT What happened?
GENERATION

SEARCH

,::'7.'-, Thomson
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Example: Tax Regulatory Insights

Notify customers on impacting tax changes

Client Data

Editorial \
a \ User
Tax Change
v
Change ot|f|cat|ons
@ Understanding

Matchlng Service

Difference

: > Thomson
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Leveraging LLMs
without compromising
Al principles
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Basics: Text Representation i R

dogs France

Transform text to vectors to enable machine learning // AYRN /\
TF-IDF Word2Vec
Term Frequency-Inverse Document Frequency (Trainable) dictionary of vector for each word
« Document represented by numeric value * Document represented by vector for each
for each word (including all words in the word.
corpus). * Each vector is h-dimensional.
* TF: word occurrence in the document. « Semantically similar words are close in the
* IDF: word occurrence in all documents. vector space.
« How representative is a word for a * Useful if semantically similar words indicate
document? the same thing, e.g. the same class.

* There are also multi-lingual word vectors.
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Basics: Natural Language Processing Tasks

A A
Examples of classes of problems
P e y » P e y N
* Auto Tagging & Classification
. . . . - Angle 6 close to © - Angle 6 close to 90
* Multi-class, multi-label classification. - Cusih) wlass ol e s e
4 v

@12

Search & Text Similarity
* BM25 or cosine similarity between document representations.

Summarization
* Extractive: find most representative sentence(s) of the text.
* Abstractive: compose new sentence(s) summarizing the text.

Clustering
+  Find groups of similar texts (represent text + use clustering algorithm).

Translation
« Can’t just translate word by word, generative deep neural models.

Adrian Alan Pol
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< >
- Angle 6 close to 180

- Cos(B) close to -1
- Opposite vectors
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COGNITIVE SCIENCE 15, 343-399 (1991)

KNOWLEDGE TRANSFER WORKSHOP
Natural Language Processing With Modular

(Larg e) Lang u ag e M Ode l.S PDP Networks and Distributed Lexicon

RISTO MIIKKULAINEN AND MICHAEL G. DYER
University of California, Los Angeles

L] L L]
An approach lo connectionist noturaol lunguage processing is proposed, which is
F rOI I I S I I I l p le Idea to a u n Ive rsal tOOl bosed on hierarchically organized modular parallel distributed processing (PDP)
networks and a central lexicon of distributed input/output representations. The
modules communicate using these representations, which are global and publicly
available in the system. The repr ions are developed automatically by all
networks while they are learning their processing tasks. The resulting represen-
. . ere o tations reflect the regularities in the subtasks, which facilitates robust processing
) T k t h t t d t t k b b l t in the face of noise and damage, supports improved generalization, and provides
a e e Seque nce, VeC O rlze I an genera e O en pro a' I I IeS’ expectations about possible contexts. The lexicon can be extended by cloning
new insiances of the items, that is, by generating a number of items with known
. . . processing properties and distinct identities. This technique combinatorially in-
) Bas I Cally, n ext to ke n p redl Ctl O n . crecses 'h.i processing power o.f the system. TPI\e recurrent FGRFP modu.le,
together with a central lexicon, is used as a basic building block in modeling
higher level natural language tasks. A single module is used to form cose-role
representations of sentences from word-by-word sequential natural language in-
put. A hierarchical organization of four recurrent FGREP modules (the DISPAR
system) is trained to produce fully expanded paraphrases of script-bosed stories,

P(Research | European where unmentioned events and role fillers are inferred.
Organization for Nuclear)

European Organization Nuclear

* The bigger the models, the more emerging capabilities.

« With the proper user interface, LLMs become valuable tools and can solve many downstream tasks, e.g.
text generation, classification, summarization, paraphrasing, entity extraction and translation.

® i
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Large Language Model Training

Why not train from scratch

« Computational resources: high electricity costs.
« Data costs: the cost of acquiring, curating, and storing data.

* Personnel costs: researchers, engineers, and specialists.

* Infrastructure costs: physical infrastructure needed to support the training process.

N —
v v
Unlabeled Collection of (prompt, Collection of @
L corpus &onsﬂpalrs/ proTpts Humalj labeler
. !
- Instruction Reinforcement learning
Pre- ¢ 8
Estraning fine-tuning from human feedback
Pretrained Instruction Reinforcement learning
LLM fine-tuned LLM fined-tuned LLM

@14 Adrian Alan Pol
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KNOWLEDGE TRANSFER WORKSHOP
Hallucinations
Using the LLMs in production remains a challange

« QOutput does not align with facts or the user's input (convincing but factually incorrect information).
» Factuality hallucinations (inconsistency or fabrication).

Hallucination is Inevitable:
Q Who was the first person to land on Moon? An Innate Limitation of Large Language Models

s N
-

= Answer: Yuri Gagarin was the first person to
( - Ziwei Xu Sanjay Jain Mohan Kankanhalli
L «,-J land on the Moon. X School of Computing, National University of Singapore

ziwei.xu@u.nus.edu {sanjay,mohan}@comp.nus.edu.sg

* Faithfulness hallucinations (instruction, context or logical inconsistency). Abstract

Hallucination has been widely recognized to be a significant drawback for large
language models (LLMs). There have been many works that attempt to reduce the

extent of hallucination. These efforts have mostly been empirical so far, which

Translate the following Enghsh question into cannot answer the fundamental question whether it can be completely eliminated.

ol W . . ) In this paper, we formalize the problem and show that it is impossible to eliminate

spanISh' What IS the Capltal Of Italy - hallucination in LLMs. Specifically, we define a formal world where hallucina-

tion is defined as i i ies between a putable LLM and a computable

T-,_ ground truth function. By employing results from learning theory, we show that
"?{ _} . . LLMs cannot learn all of the putable functions and will therefore always hal-
Sei Answer: Capltal of Italy is Rome X lucinate. Since the formal world is a part of the real world which is much more
( -“ complicated, hallucinations are also inevitable for real world LLMs. Furthermore,
- for real world LLMs constrained by provable time complexity, we describe the

hallucination-prone tasks and empirically validate our claims. Finally, using the
formal world framework, we discuss the possible mechanisms and efficacies of
existing hallucination mitigators as well as the practical implications on the safe
deployment of LLMs.

 Other LLM issues: staleness, customization, attribution, revisions.

"»*-% Thomson
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Hallucinations: Risks

High stakes in legal and tax domain

Pakistani judge uses ChatGPT to
make court decision

After exchanges with ChatGPT, judge used his own arguments as basis for the

‘Al revolution is here’. Pakistani court takes help from ChatGPT

Lawyers have real bad day in court after
citing fake cases made up by ChatGPT

Lawyers fined $5K and lose case after using Al chatbot "gibberish" in filings.

Transac tional | Judiciary | Legal Industry | Legal Ethics | Technology

US judge orders lawyers to sign Al
pledge, warning chatbots 'make stuff up'
;'.:'.'7.’-, Thomson
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Hallucinations: Causes

Three roots of hallucinations

« Data: flawed or biased training data can lead LLMs to learn incorrect patterns and factual errors.
* Misinformation and biases: falsehoods, duplication, social bias.
* Boundaries: domain knowledge deficiency, outdated factual knowledge.
*  Knowledge shortcut.
* Knowledge recall.

* Training: issues during pre-training or alignment processes.
* Pre-training: architecture flaws, exposure bias.
* Alignment: capability, belief misalignment.

* Inference: stochastic nature of the decoding strategies can introduce randomness.
«  Sampling randomness.
* Imperfect decoding representation: context size, softmax bottleneck.

o0y
2+ Thomson
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Hallucinations: Inference Randomness

Not falling for the likelihood trap

« The likelihood trap: counter-intuitive observation that high likelihood sequences are often low quality.

https://arxiv.org/abs/2004.10450

* Deterministic decoding strategies are unsuitable for good interface.

* Use stochastic decoding strategy, e.g., top-k, top-p.

ety
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Hallucinations: Detection

Measuring hallucinations

Confidence score: output reflects LLM’s confidence in the generated text's correctness.
* Uncertainty estimation: use internal model states (e.g. token probability) to identify hallucination.

« Consistency check: compare the output with knowledge sources.
* Measure overlap using, e.g. n-grams.
* Prompting based.

 Benchmarks: standardized datasets designed to test for hallucinations.

« Error detection and analysis protocols or model and data drift monitoring systems should be included
standard deployment stategies.

o0y
2+ Thomson
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Hallucinations: Detection Example
SelfCheckGPT

« Compare multiple responses from a model using the same query.
* Measure consistency between those responses, using, e.g., simple prompt.

« Drawback: more calls, more tokens lead to higher costs.

Stochastically-generated responses

LLM sample1 sampleN
e.g. GPT-3 Giuseppe Mariani was an Giuseppe Mariani was an
Italian painter, sculptor, Italian violinist,
and engraver. He was pedagogue and

composer. He was born

bom in Naples, Italy, in
1882, and died in Paris, in Pavia, Italy, on 4 June
N samples France, in 1944. 1836. [truncated]

[truncated]
Giuseppe Mariani was LLM l l l
an Italian professional
footballer who played Does {sample1} Does {sampleN}
as a forward. He was i -
born in Milan, Italy. He support {sentence}? support {sentence}?
died in Rome, Italy. Answer: [Yes/No] Answer: [Yes/No]
[truncated) l l l
LLM's passage
to be evaluated at (No = Yes - No ,
sentence-level T
SelfCheckGPT Score

(e.g. how often is the sentence supported by the samples)
o0y
J»~’s Thomson
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Hallucinations: Mitigation

Mitigation strategies have different cost

« Model solutions: parameter setting (e.g. temperature), model choices.
* Prompt engineering: guiding model behaviour with defined rules and limitations via prompting.
« External memory: e.g. Retrieval-Augmented Generation (RAG).

 Ensemble methods: combining multiple models, e.g. LLM Blender.

* Model fine-tuning: refining the weights for specific downstream tasks and datasets.

« Oversight and editorial control: fact-checking and verification by human experts.

ety
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Retrieval Augmented Generation (RAGs)

External memory: enhance performace

* Integration of external knowledge within context: retrieve relevant information during inference,
enabling the generation of factually grounded outputs.

* Improved factual accuracy: mitigate the issue of hallucinations.
« Efficient customization and revisions.
« Explainability: opens avenues to mitigate the issue of attribution.

« Adaptability to evolving knowledge: mitigates the issue of staleness.

o0y
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Retrieval Augmented Generation (RAGs)

Non-parametric memory

« During inference retrieve relevant information and agument the prompt.

Vector Store
Embedding

Model
Documenl‘ LLM

-

, /a::i
O am / |k

{Context}
Output {Query}

{Prompt}
‘ < : =", Thomson
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Fine-Tuning
Tradeoffs of fine-tuning

« Customization: moving away from general-purpose to domain-specific, using a focused dataset.
« Performance boost: build upon the already acquired knowledge and retain old skills.

* Resource efficiency: requires less data and computational resources than training from scratch.
« Data optimization: fine-tuning relies on the quality of the data used.

« But itis still costly and introduces a risk of forgetting.

o0y
J»~’s Thomson
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F

ine-Tuning: LORA

Lower fine-tuning duration and costs

@25

Low-Rank Adaptation (LoRA), a method for adapting LLMs for specific tasks.
Use rank-decomposition matrices to achieve adaptation and reduce the number of trainable parameters.

Parameters fused with original weights - avoids introducina additional inference latency.

Pretrained
Weights

W e R

Stanford Alpaca: a protocol to fine-tune open-source LLM with self-instruct and LoRA for a few hundred
dollars.

Stanford
Alpaca ¥

® i
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Quantization

Reducing cost with fewer bits

026

Model training and inference uses floating point representation.

Quantization results in fixed precision weights and activations.

« Reduction in computational cost for matrix multiplication and addition.
* Reduction in data transfer and the memory needed for storing tensors.

Quantization reduces energy, latency (training and inference) and area.

Quantization aware training, quantizes and fine-tunes to recover lost performance.

Adrian Alan Pol

Symmetric signed Symmetric unsigned
S Xint8 S Xuint8
-128 127 255
Lo Lol ol ol pi el
0 ‘7; max 0 t'; max
Asymmetric
S(XUintS - Z)
0 255
Lo looa b dalongl
min = —sz & 0 max

Figure 3: A visual explanation of the different uniform quantization grids for a bit-width of 8. s is the
scaling factor, z the zero-point. The floating-point grid is in black, the integer quantized grid in blue.

Operation

8-bit Integer

32-bit Integer
16-bit Floating Point 1.1pJ  0.4pJ
32-bit Floating Point 3.7pJ  0.9pJ

MUL ADD
0.2pJ 0.03pJ
3.1pJ  0.1pJ
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Heterogeneous Quantization

KT-CEVA collaboration: optimal quantization configuration

« Quantization granularity: homogeneous or heterogeneous (per-layer, -channel, -group).

Full Precision {bi}*1

( ] )
High Accuracy

8 bit 8 bit
2 bit 2 bit
» Quantization | » 4 bit e QAT > bt
4 bit 4 bit
() )

Recovered Accuracy

« Accuracy drop is minimised by considering the sensitivity of layers to quantization.

Estimator Variance Iteration Time (ms) Relative Speedup
EF Hessian EF Hessian
ResNet-18 0.15+003 1.09+£0.02 47.78 + 0.03 186.54 + 0.56 27.67 + 5.40
ResNet-50 031 +004 6914152 152.02+4+038 639.13 + 1.02 94.24 + 34.06

MobileNet-V2  0.24 +0.01  4.81 + 0.38 58.84 + 055 257350 +£3.06 894.24 + 121.25
Inception-V3 043 +0.03 13.62+046 235434021 905.04 £+ 4.69 122.06 + 14.90

027 Adrian Alan Pol

FIT: A METRIC FOR MODEL SENSITIVITY

Ben Zandonati Adrian Alan Pol Maurizio Pierini

University of Cambridge Princeton University CERN

baz23@cam.ac.uk ap6964@princeton.edu maurizio.pierini@cern.ch
Olya Sirkin Tal Kopetz

CEVA Inc. CEVA Inc.

sirkinolya@gmail.com tal.kopetz@ceva-dsp.com
.® L4 ..
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Quantization of Language Models

KT-CEVA collaboration: optimal quantization configuration

@28

Large Language Models can be quantized, too.

The Era of 1-bit LLMs:

All Large Language Models are in 1.58 Bits

LLaMAC:

Shuming Ma* Hongyu Wang* Lingxiao Ma Lei Wang Wenhui Wang
Shaohan Huang LiDong Ruiping Wang Jilong Xue Furu Wei®
https://aka.ms/General Al

FITCompress (KT-CEVA collaboration), compressed BERT to 3.10% original size with minimal performance loss.

How CERN and Ceva are pioneering the
future of Edge Al

What does the face recognition on your phone have to do with particle physics? Discover how CERN and
Ceva, a leader in digital signal processor technology, worked together to advance Artificial Intelligence (Al)
on the edge.

FITCompress was integrated into CEVA’s products.

Adrian Alan Pol

Method A Performance  Rel. BOPs (%)
FPTQFT -1.76 60.00
OBC -4.71 10.00
SQuAD (FP F: 88.20) Q-BERT -0.33 3.13
FITCompress 0.33 £ 0.04 3.10 £ 0.04
FPTQFT -1.08 60.00
SST-2 (FP Acc: 92.66%) Q-BERT -0.34 3.13
FITCompress -0.32 + 0.06 3.10 £+ 0.03
FPTQFT -2.02 60.00
MNLI-m (FP Acc: 85.01%) Q-BERT -0.11 3.13
FITCompress -0.13 £ 0.07 3.10 £ 0.04
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Fine-Tuning: QLORA
Accelarate fine-tuning

* Fine-tuning 65B parameter models on a single GPU is difficult because of memory requirements.
* Quantized LoRA (QLoRA) reduces memory usage during fine tuning by using 4-bit quantization.

* QLoRA can be combined with other fine-tuning techniques, e.g. Alpaca.

Full Finetuning LoRA QLoRA
(No Adapters)

000|686 6
[ S A O A R =
(- ? (- o O O
r

apREIEIIIERS
we (D) () S

16-bit Transformer 16-bit Transformer 4-bit Transformer Paging Flow wjp

................

Figure 1: Different finetuning methods and their memory requirements. QLORA improves over LoRA by
quantizing the transformer model to 4-bit precision and using paged optimizers to handle memory spikes.
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Summary

and Miscellaneous

LLMs became a standard tool for solving NLP problems.

Based on current understanding, some level of hallucinations is expected.
* To mitigate this issue, common strategies are prompt engineering, RAGs and fine-tuning.
* RAGs remain a popular and robust solution for grounding LLMs.

« Collaboration with model providers is crucial to optimize prompts and costs.
» During the design phase, we focus on minimizing calls and tokens.
« Leveraging cloud-based infrastructure for its scalability and potential cost benefits.

» Efficient fine-tuning for faster delivery.

o0y
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Moving from CERN to Big Tech as a Postdoc

What skills do you have?

Hard skills:

« Strong foundation in math and statistics.
* Programming experience

« Handling large datasets.

« Data analysis and problem-solving.

* Experience with computing tools.

* Experimental design.

You are missing NLP experience... let’s brainstorm.

@32 Adrian Alan Pol

Soft skills:

Analytical skills.
Communication.
Collaboration.

Leadership.
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Not on the LLM train yet? Don’t worry, | got this. ;)

Shifter Assistant

During data taking, part of the shifter's job
is to note any relevant information for
future operator crews, detector experts
and data certification personnel.

Based on the past logs (and optionally
some other inputs from the shifter),
generate a set of high-quality comments
on the apparatus's state via simple
typeahead.

Additionally, extending this approach by
including apparatus status from data
monitoring tools via a language interface
is a great way to increase the expert’s
visibility of the detector issues.

®33 Adrian Alan Pol

Research Assistant

Copious data piling up in CERN Twiki is an
issue when onboarding a new tool,
especially for students who have not been
around CERN long enough. The search
functionality often fails to deliver, and
legacy documentation may lead to
wasted hours.

The interaction with Twiki can extended to
a chat interface using the RAG approach,
and the relevant content may be
leveraged to provide question-specific
answers.

When documentation is updated, so is the
chatbot.

Educational Tools

Science communication and outreach
have long been CERN’s goals.

CERN may offer a new interface for
interacting with the public (text-to-
speech, for example).

Maria Sklodowska-Curie’s avatar can
clearly and engagingly answer questions
about scientific phenomena in multiple
languages. Grounding the system using
CERN’s guide material can mitigate the
hallucinations.
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