

Validation of the CMS EvtGen interface

R.Covarelli University of Rochester

- Brief introduction:
 - CMS interface to EvtGen
- CMS validation plots
- Status of validation
- Conclusions

Code compilation/linking (C++):

- Automatic generation of MakeFile and compilation (scram)
- Library linking (in order):
 - User-defined libraries in local areas
 - Standard CMSSW packages (a set of compatible package versions is altogether referred to as a release)
 - "External" (non-CMSSW) libraries, e.g. MC generators
- Single executable application as output (cmsRun)
- Configuration and running (Python):
 - cmsRun driven by a configuration file
 - It contains a schedule of modules to be run in the specified order
 - Output information stored in ROOT file format

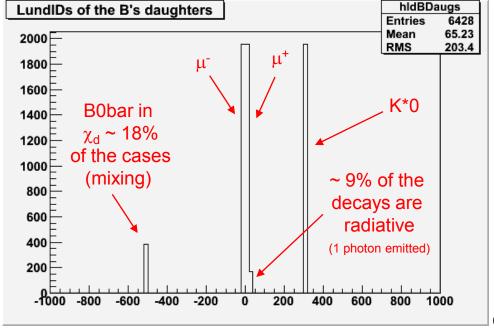
Event generation flow:

- 1) Run e.g. Pythia6 as the event source
 - Particle types known from EvtGen tables artificially made stable
- 2) Run EvtGenLHC as an "external decay driver"
 - Decay "undecayed" particles that are in EvtGen tables
 - Inclusive B decays (i.e. those whose BR's are not specified) are generated via external interface to Pythia6
 - Radiative corrections calculated via interface to PHOTOS
- 3) Output stored as CMS HepMCProducts
 - Decay products are translated from standard HEP to HepMC format

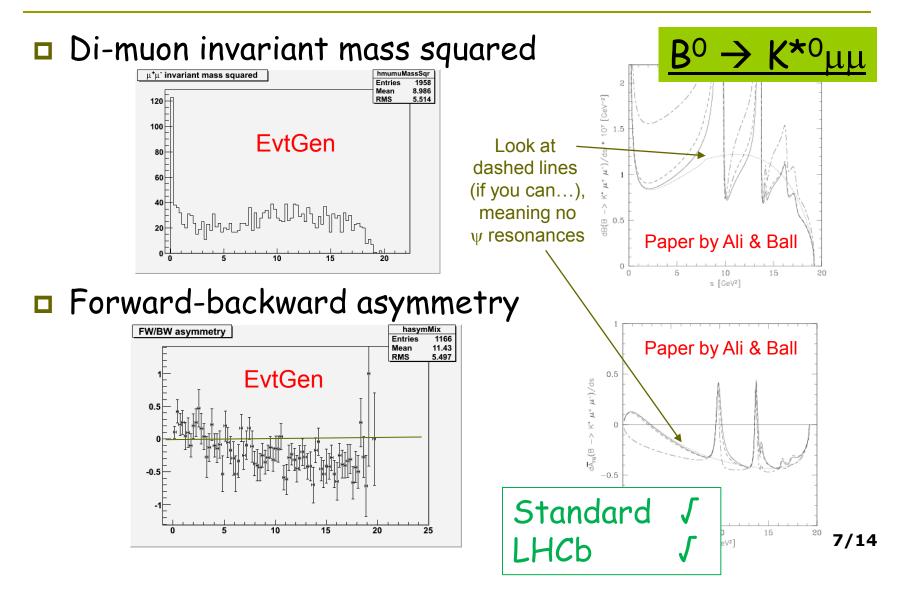
- □ A simple analyzer of the HepMC event is being coded → can be easily expanded
- In the following some validation plots will be shown
 - The standard MC validation recipe from the CMS generator group is difficult to apply to our case ← e.g. includes comparison with the standalone version output which is impossible for a combined generator (Pythia + EvtGen)

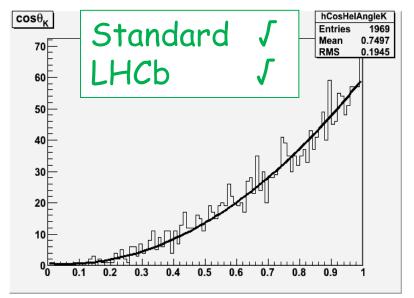
Tests are done for:

- 1. The standard CMS EvtGen version (EvtGenLHC 9.1)
- Some "intermediate" version taken from LHCb already based on Anders' merging (thanks to P. Robbe)
- Not possible to test yet Warwick versions → lack of manpower

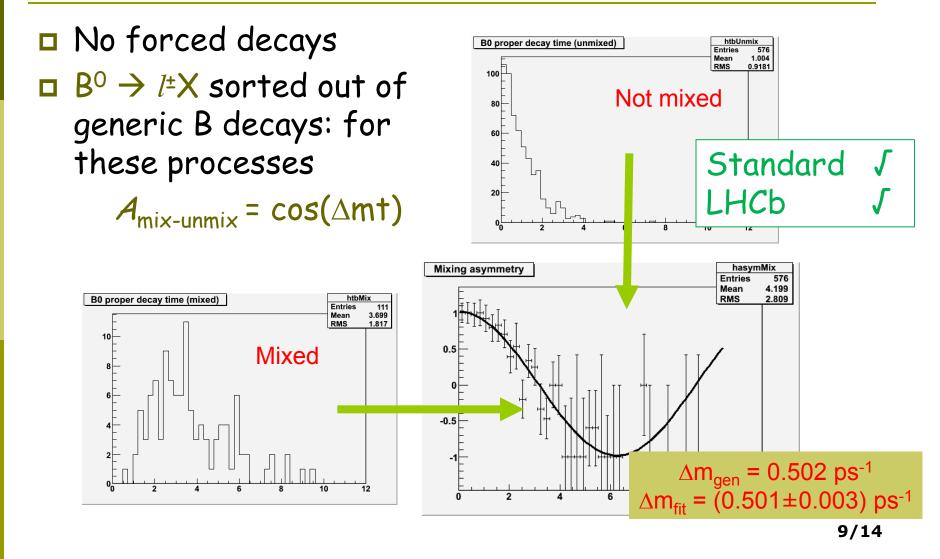


Example: forced signal mode

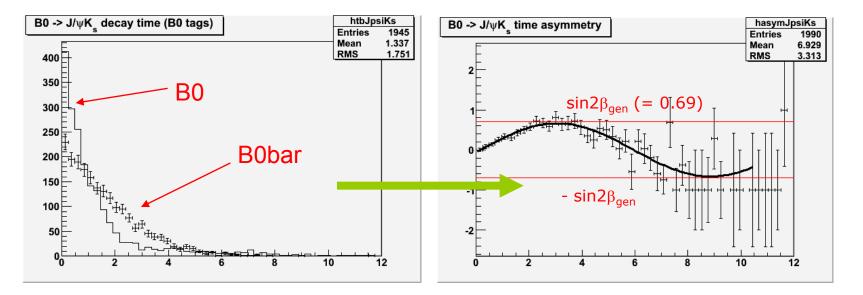

- $B^0 \rightarrow K^{*0}\mu\mu$ (non resonant)
- □ In the user file decay model is BTOSLLBALL (b → sll according to Ali and Ball's parameterization)



1) Testing decays / decay models



- To test angular correlations we need decay chains with well-defined spin structure (e.g. $\underline{D}_{\underline{s}} \rightarrow \phi\pi, \phi \rightarrow KK$)
 - For all-hadronic two-body decays the helicity angle has peculiar distributions.
 - The helicity angle in a A → BX
 → CX decay is the angle
 between the C direction in the
 B rest frame and the B
 direction in the A rest frame.
 - If the first decay is a P \rightarrow VP and the second is a V \rightarrow PP, then the θ_{H} distribution is proportional to $|Y_{1}^{0}(\theta,\phi)|^{2} \sim \cos^{2}\theta_{H}$


Distribution of $|\cos\theta_{H}|$ for the positive kaon in $D_{s} \rightarrow \phi \pi \ (\phi \rightarrow KK)$

- □ Forced decay:
 - $B^0 \rightarrow J/\psi K_s$
- Decay mode is SSD_CP (CP eigenstate with weak phase = -2β in this case)

- No forced decays
- B⁰ → l[±]X , with one of the B mixed (i.e. same-sign leptons) sorted out of generic B decays: for these processes

*A*_{++/--} ~ 2(1- |q/p|)

Standard x LHCb x (asymmetry distribution is flat at 0 for any value of |q/p|)

- Important due to recent D0 measurement (3σ from SM)...
- ... but very easy to obtain with event reweighting

- Validation of EvtGen in CMS is based on a few key plots that show proper behaviour of quantities that other generators are not able to model
 - Done every few releases \rightarrow OK with EvtGen 9.1
- Few discrepancies found in most recent EvtGen versions
 - Probably due simply to different implementation of inchoerent mixing and CPV
- Too small manpower to ensure staying always up-todate
 - Hopefully, first results from Warwick EvtGen very soon...