${\rm J}/\psi$ production measurements in pp and PbPb collisions with ALICE at LHC

Francesco Bossù for the ALICE collaboration

University and INFN of Turin

Protvino, 18 Nov 2011

Outline

Motivations

 ${\rm @ J/\psi \ in \ p-p \ collisions}$

(a) J/ψ in Pb-Pb collisions

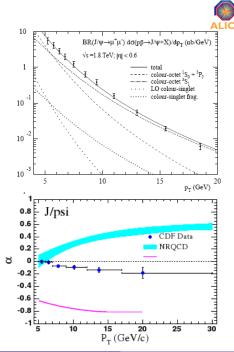
Onclusions
 Onclusions
 Onclusion
 Onclus

Outline

Motivations

 ${\rm @~J}/\psi~{\rm in~p-p~collisions}$

 ${f 0}$ J/ ψ in Pb-Pb collisions

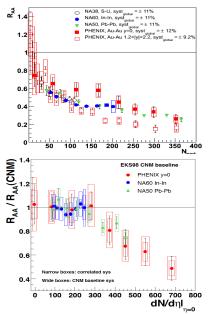

Occusion Occusion

Physics motivations - proton-proton

Heavy quarkonium production is usually considered a two-stage process:

- Perturbative qq̄ production
- Non-perturbative evolution when the bound state is formed

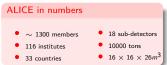
- J/ψ represents a good laboratory to test non-perturbative QCD
- Different models are available for the description of the production mechanism, but many issues are still open (x-section in wide range of p_t, polarization...)
- New energy domain at LHC: measurement of the production cross section and kinematical properties will give new clues

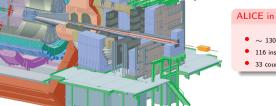


Physics motivations - Pb-Pb

- Quarkonium suppression: one of the most promising probes of the QGP formation
- Not so easy: other effects such as Cold Nuclear Matter effects and cc
 regeneration play a role
- Suppression observed at SPS and RHIC but still many open issues
 - Suppression observed on top of CNM effects
 - Suppression at PHENIX not larger than at SPS
 - PHENIX measured larger suppression at forward rapidity

At LHC


- the cross section for $c\bar{c}$ production is 10 times larger with respect to RHIC
- higher energy density and lifetime of the fireball
- possible measurements in a wide range of $p_{\rm t}$ and y



The ALICE experiment

- Main goal: heavy-ion collisions
- Data taking in *p*-*p* collisions also included in the ALICE physics programme

Central Barrel

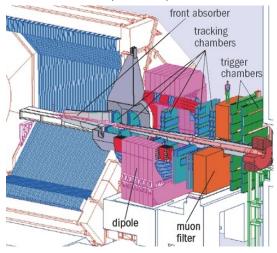
• $|\eta| \leq 0.9$

1

- · Hadrons, electrons and photons
- $p_t \rightarrow 0$

Muon Spectrometer

- $-4 \le \eta \le -2.5$
- Muons
- p_{muons} > 4GeV/c


Forward Detectors

- Large η
- Interaction trigger
- Event centrality

Muon Spectrometer

- Quarkonia $(J/\psi,\,\psi'$ and $\Upsilon(1S),\,\Upsilon(2S),\,\Upsilon(3S))$ down to $p_{
 m t}=0$
- Open heavy flavours via single muons and dimuons
- Electroweak bosons (Z^0 and W^{\pm})

Expected mass resolutions

	Single muon pt cut
\sim 70 <i>MeV</i> / $c^2 \rightarrow J/\psi$	1GeV/c
$\sim 100 {\it MeV}/c^2 ightarrow \Upsilon$	2GeV/c

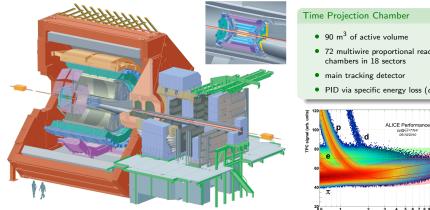
Dipole

• B = 3 T m

Tracking System

- 5 stations of 2 planes of Cathode Pad Chambers (CPC) each
- 1.1M read-out channels
- spatial resolution $< 100 \mu m$ (bending plane)

Trigger System


- 2 stations of 2 planes of Resistive Plate Chambers (RPC) each
- 21k read-out channels
- 2 programmable pt cuts
- 5 different trigger signals sent in ~ 800ns

Central Barrel

Inner Tracking System

- two layers each of silicon pixel, drift and strip detectors
- between 4 and 44 cm from the • interaction point
- vertexing detector (primary and secondary)
- used in minimum bias trigger

- 72 multiwire proportional readout chambers in 18 sectors
- PID via specific energy loss (dE/dx)

6 7 8 9 10

20 P [GeV/c]

Outline

Motivations

${\rm @ J}/\psi {\rm ~in~ p-p~ collisions}$

 ${f 0}$ J/ ψ in Pb-Pb collisions

Occusion Occusion

${\rm J}/\psi$ in p-p collisions

- ALICE took data in p-p runs at two energies: $\sqrt{s} = 2.76$ and 7 TeV
- Analysis results at 7 TeV published (PLB704 (2011) 442)
- At 2.76 TeV preliminary results

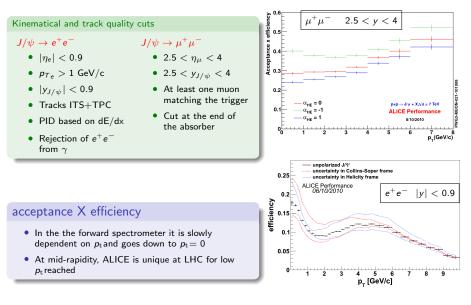
V0-C

• Integrated luminosity used for cross section determination

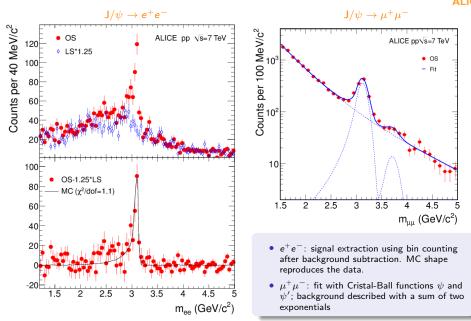
	$J/\psi ightarrow \mu^+\mu^-$	$J/\psi ightarrow e^+e^-$
$\sqrt{s} = 7 TeV$	15.6 nb^{-1}	5.6 nb^{-1}
$\sqrt{s}=2.76 TeV$	20.2 nb^{-1}	$1.1 \ {\rm nb}^{-1}$

SPD

V0-A


Event selection

- Minimum bias trigger (MB): OR between SPD (pixels) and V0s (scintillators)
- At least one particle in 8 η units
- Additional requirement for muon analysis: Single Muon trigger
- In coincidence with a MB
- Hardware $p_{\rm t}$ threshold: $\approx 0.5~{\rm GeV/c}$



${\rm J}/\psi$ in p-p collisions

${\sf J}/\psi$ in p-p collisions - Signal Extraction

${\sf J}/\psi$ in p-p collisions - Cross Sections

$$\sigma_{J/\psi} = \frac{N_{J/\psi}}{\textit{Acc} \times \epsilon} \times \sigma_{\textit{MB}}$$

σ_{MB}

Determination from van Der Meer scans σ_{MB} 7 TeV 62.3 ± 4.3 mb 2.76 TeV 54.2 ± 3.8 mb (arXiv:1107.0692)

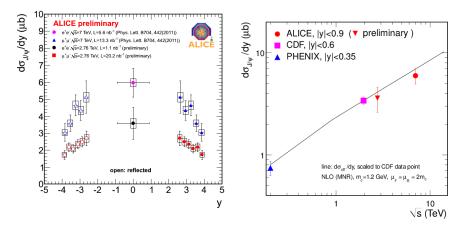
Inclusive J/ψ production cross section

• $\sqrt{s} = 7 \text{ TeV} (\text{PLB704} (2011) 442)$

 $\sigma_{J/\psi}(2.5 < y < 4) = 6.31 \pm 0.22(stat) \pm 0.76(syst)^{+0.95}_{-1.96}(syst.pol.) \ \mu b$

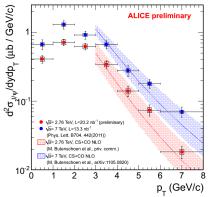
 $\sigma_{J/\psi}(|y| < 0.9) = 10.7 \pm 1.0(stat) \pm 1.6(syst)^{+1.6}_{-2.3}(syst.pol.) \ \mu b$

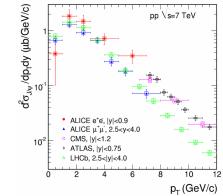
• $\sqrt{s} = 2.76 \text{ TeV}$ (preliminary; arXiv:1107.0137)


 $\sigma_{J/\psi}(2.5 < y < 4) = 3.46 \pm 0.13(stat) \pm 0.32(syst) \pm 0.28(lumi)^{+0.55}_{-1.11}(syst.pol.) \ \mu b$

 $\sigma_{J/\psi}(|y| < 0.9) = 6.44 \pm 1.42(stat) \pm 0.88(syst) \pm 0.52(lumi)^{+0.64}_{-1.42}(syst.pol.) \ \mu b$

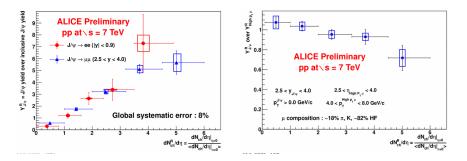
${\rm J}/\psi$ in p-p collisions - Cross Sections - y distribution


- ALICE can measure ${\rm J}/\psi$ in a wide range of rapidity
- NLO calculations lie on top of the data at different energies


${\rm J}/\psi$ in p-p collisions - Cross Sections - ${\it p}_{\rm t}$ distribution

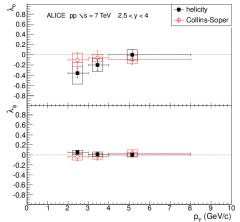
- d²σ/dydp_t extracted at forward rapidities for both the energies
- NRQCD calculations well reproduce the data (for p_t > 3GeV/c)

- Fair agreement at 7 TeV with other LHC experiments
- At forward rapidities with LHCb
- At mid-rapidity ALICE is complementary to ATLAS and CMS

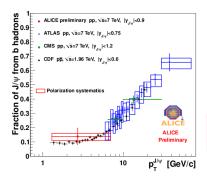

${\rm J}/\psi$ in p-p collisions - Multiplicity dependence

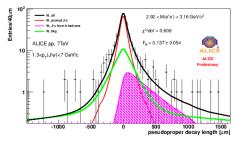
 ${\rm J}/\psi$ yield as a function of the charged particle multiplicity

- $dN_{ch}/d\eta^{max}\sim$ 30 at $\sqrt{s}=$ 7 TeV; comparable with semi-central CuCu collisions at 200GeV
- A linear increase is observed
- A smaller increase of the ${\rm J}/\psi$ yield with respect to high- $p_{
 m t}$ muons


Solid explanations not yet available. Input from theorists needed

J/ψ in p-p collisions - Polarization


- J/ψ polarization studied in two different reference frames: Collins-Soper (CS) and Helicity (HE)
- Fresh results submitted for publication: arXiv:1111.1630
- The polarization parameters λ_{θ} and λ_{ϕ} were extracted in 3 $p_{\rm t}$ bins (from 2 to 8 GeV/c)
- Results show a slight increase of λ_{θ} with $p_{\rm t}$ in the helicity reference frame



${\sf J}/\psi$ in p-p collisions - Non-prompt ${\sf J}/\psi$

- At mid-rapidity (|y| < 0.9) excellent vertexing capabilities of the ITS
- It is possible to extract the non-prompt fraction of the total inclusive ${\rm J}/\psi$ cross section
- Simultaneous likelihood fit of the invariant mass and the pseudo-proper decay length

- The measurement extend the p_t reach of the LHC experiments at central rapidity down to 1.3 GeV/c
- It is also in agreement with CDF results

 $F_B = 0.137 \pm 0.054(stat) + 0.025 - 0 - 018(syst)^{+0.040}_{-0.021}(pol)$

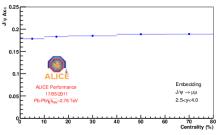
Outline

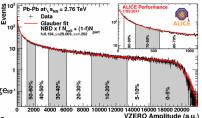
Motivations

 ${\rm @~J}/\psi~{\rm in~p-p~collisions}$

(a) J/ψ in Pb-Pb collisions

Occusion Occusion


${\rm J}/\psi$ in Pb-Pb collisions $\sqrt{s_{NN}}=2.76~{ m TeV}$


Trigger

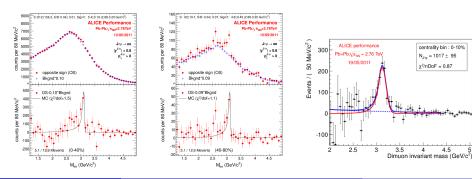
- Minimum Bias: AND between V0s and SPD
- $\sim 17\cdot 10^6$ MB events, Int. Lumi. $\sim 2.7 \mu b^{-1}$

Centrality

- Glauber model fit to VZERO amplitude
- EM contribution negligible in the centrality range $_{10^{\circ}}$ 0-80%
- Limited statistics for ${\sf J}/\psi$: less centrality classes
- $\mu^+\mu^-$: [0, 10] [10, 20] [20, 40] [40, 80]%
- e^+e^- : [0, 40] [40, 80]%

Track selection

- $\mu^+\mu^-$
- Both muons matching the trigger
- As in p-p : 2.5 $< y_{J/\psi} <$ 4, 2.5 $< \eta_{\mu} <$ 4, cut on position at the end of the absorber
- e⁺e⁻
- ITS+TPC tracks, PID by TPC
- $|\eta_e| < 0.8$


Acceptance

- Standard MC and real event embedding
- $\mu^+\mu^-$ small decrease (~5%) for central events

J/ψ in Pb-Pb collisions $\sqrt{s_{NN}} = 2.76$ TeV - Signal Extraction $\mu^+\mu^-$

- Crystal-Ball shape (signal) and 2 exponentials for the background
- Mixed event technique, background subtraction and fit with the Crystal-Ball
- Results from different techniques combined to extract $< N_{J/\psi} >$
- e^+e^-
 - Small statistics, but signal is visible in spite of the low S/B
 - Signal extraction: bin counting after background subtraction

centrality bin : 0-10%

 $_{0.01} = 0.10 \pm 0.01$

3.5 4 4.5 5 Dimuon invariant mass (GeV/c²)

 $= 87 \pm 18$

 $N_{the} = 876 \pm 95$

VS+B(::30) x²/nDoF = 0.86

Events / (50 MeV/c²

10³

10²

2.5

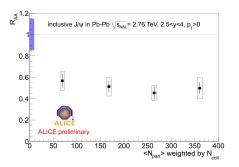
ALICE performance

Pb+Pb, Vs_{NN} = 2.76 TeV

19/05/2011

 ${\rm J}/\psi$ in Pb-Pb collisions $\sqrt{s_{NN}}=$ 2.76 TeV - ${
m R}_{
m AA}$

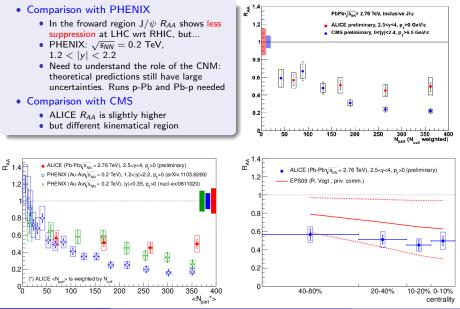
Nuclear Modification Factor


$$R_{AA}^{i} = \frac{Y_{J/\psi}^{i}}{\langle T_{AA}^{i} \rangle \times \sigma_{J/\psi}^{incl} (pp@2.76TeV)}$$

Inclusive J/
$$\psi
ightarrow \mu^+\mu^-$$
 - 2.5 $< y <$ 4, down to $p_{
m t} =$ 0

$$R_{AA}^{0-80} = 0.49 \pm 0.03(stat) \pm 0.11(syst)$$

• Raw yield:
$$Y_{J/\psi}^{i} = \frac{N_{J/\psi}^{i}}{BR \cdot Acc \times eff \cdot N_{MB}^{i}}$$


- Acceptance × efficiency corrections applied
- pp@2.76 TeV reference: see slide 13
- Error bars: statistical uncertainties
- Open boxes: centrality-dependent systematic uncertainties
- Blue box: common systematics
- Systematics dominated by signal extraction (up to 19% in the most central bin) and by the pp inclusive cross-section measurement (13%)

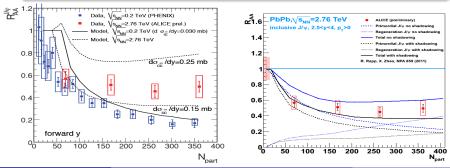
Suppression with no strong centrality dependence

J/ψ in Pb-Pb collisions $\sqrt{s_{NN}} = 2.76$ TeV - R_{AA}

 ψ production measurements in pp and PbPb collisions with ALICE at LHC Protvino, 18 Nov 2011 18 / 23

${\rm J}/\psi$ in Pb-Pb collisions $\sqrt{s_{NN}}=$ 2.76 TeV - ${ m R}_{ m AA}$

Comparison with models

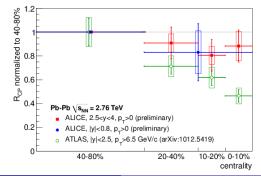

Statistical hadronization

- Screening of all direct ${\sf J}/\psi$
- CNM effects
- Charmonium production by statistical recombination of uncorrelated charm quarks

Parton transport model

- Prompt J/ψ dissociation
- Shadowing
- Charmonium production by statistical recombination of uncorrelated charm quarks
- B feed-down

Model needs recombination of $c\bar{c}$ quarks for reproducing the measured RAA, but more measurement are needed: total charm cross-section and J/ ψ in pA collisions.



 ${\rm J}/\psi$ in Pb-Pb collisions $\sqrt{s_{NN}}=$ 2.76 TeV - ${
m R_{CP}}$

$$R_{CP}^{i} = \frac{Y_{J/\psi}^{i} / \langle T_{AA}^{i} \rangle}{Y_{J/\psi}^{40-80\%} / \langle T_{AA}^{40-80\%} \rangle}$$

• Independent from the p-p reference

ALICE

- 2.5 < *y* < 4
- |y| < 0.8
- $p_{\rm t} > 0$

ATLAS

- |y| < 2.5
- $p_{\mathrm{t}} > 6.5~\mathrm{GeV/c}$
- Error in the 40-80% bin not propagated
- *R_{CP}* larger for ALICE wrt ATLAS, but very different kinematical regions
- ALICE measurement of inclusive J/ψ R_{CP} at mid-rapidity is very challenging
- More statistics needed

Outline

Motivations

 ${\rm @~J}/\psi~{\rm in~p-p~collisions}$

(a) J/ψ in Pb-Pb collisions

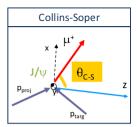
Occusion Occusion

Conclusions

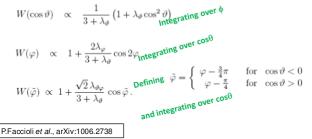
- ALICE measured the inclusive J/ψ production cross section in p-p collisions at $\sqrt{s} = 7$ and 2.76 TeV both at mid rapidity and at forward rapidity down to $p_t = 0$
- The measured cross section, as well as the p_t and y differential cross section, are in agreement with results from the other LHC experiments.
- J/ ψ production shows a linear increase with the charged particle multiplicity: interpretations needed.
- First measurement of J/ ψ polarization at LHC: J/ ψ seems to be unpolarized except for low p_t bin in the helicity frame where a longitudinal polarization is measured.
- ALICE is able to measure J/ψ from B at mid-rapidity down to $p_t = 0$, and first results were shown.
 - Inclusive J/ ψ production in Pb-Pb at $\sqrt{s_{NN}}=2.76~{\rm TeV}$ measured both at forward and mid-rapidity .
 - R_{AA} at forward rapidity shows a clear suppression with N_{part} but less than PHENIX.
 - R_{AA} and R_{CP} values larger than CMS and ATLAS, but kinematical coverage is different.
 - It is mandatory a deep understanding of the CNM effects. p-Pb collisions expected at the end of 2012.

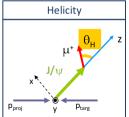
BACKUP

${\sf J}/\psi$ in p-p - Polarization



The polarization of the J/ ψ can be measured through the angular analysis of its daughter particles. Taking as a reference the μ^* , its angular distribution can be expressed as:


 $\textbf{W}(\textbf{cos}\theta,\phi) \propto \textbf{1} + \lambda_{\theta} \, \textbf{cos}^2\theta + \lambda_{\phi} \, \textbf{sin}^2\theta \, \textbf{cos} \textbf{2}\phi + \lambda_{\theta\phi} \, \textbf{sin} \textbf{2}\theta \, \textbf{cos}\phi$


The reference frame can be chosen in different ways and is defined on a event-by-event basis

All the three parameters can be extracted in a 1D approach

bisector of the angle between proj. and (-) target in the quarkonium C.M. frame.

Direction of the quarkonium in the C.M. frame of the collision.

sources	centrality				
	0-10%	10-20%	20-40%	40-80%	correlated
N _{J/ψ}	19 %	14 %	17%	14%	-
$N_{J/\psi}/N_{J/\psi}^{40-80\%}$	12%	8%	7%	-	-
Acc. inputs	-	-	-	-	3%
Trigger eff.	-	-	-	-	4%
Tracking eff.	4%	2%	1%	0%	5%
Reco eff.	-	-	-	-	2%
Branching ratio	-	-	-	-	1%
Cross Section	-	-	-	-	13%
<t<sub>AA></t<sub>	4%	4%	4%	6%	-
$< T_{AA} > i / < T_{AA} > 40-80\%$	6%	5%	4%	-	-
Total for R _{AA}	20%	15%	17%	15%	15%
Total for R _{CP}	14%	10%	8%	-	-