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There are described in brief the system of photon spectrometer PHOS cooling and thermal stabilization system of 
ALICE experiment as well as the experience of its operation in the experiments on colliding proton and ion beams 

realized on a Large Hadron Collider. The system has operated more than 20 months in a continuous mode
providing the required operating temperature of crystals -25°C and its high stability of ±0.1°C.
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PHOS spectrometer in ALICE 
experiment

General view of experimental facility ALICE inside a pit UX25, depth ~50 m. 

The goal of ALICE
experiment is to study 
fundamental properties 

of substance on 
colliding beams p-p
and Pb-Pb with total 
energy up to 14 ТeV.

PHOS magnet L3
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External view of PHOS

PHOS 
Cooling 
System

VNIIEF 
development

PHOS in
L3 magnet

PHOS – one of a small 
number of CERN projects 
where the leading part is 

played by Russia

PWO matrix

64×56

Sarov
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PHOS: 3 modules (possible up to
5 units).

3 modules 10752 channels.
One module contains: 
64×56=3584 crystals.

PHOS spectrometer design 
mechanical assemblies and assemblage itself are realized by VNIIEF

Crystal: PWO (PbWO4)
Total volume of PWO: 0.93 m3

Total weight of PWO: 7.5 t
Sub-assembly: bars 8×2

Sealed container
Working temperature -25°C

Cooling board
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Energy resolution of PHOS
One of critically significant characteristics of 
PHOS spectrometer is energy resolution ΔE/E. 
To meet the experiment conditions there should 
be ΔE/E=1% at high E values.

Spectrum π0
on the SPS  
test beam Measured 

resolution 
curve ∆E/E
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PWO crystals
What do we need to achieve resolution ∆E/E = 1 % ?

External view of PWO crystals 
with a preamplifier at the end

Diagram of PWO crystals light yield 
dependence on temperature

Operating temperature -25°C, coefficient ≈ -2.3 % per 1°C.
Requirements to stabilization accuracy ± 0.1°C.



10/10/2011 8Alexei.Kuryakin@cern.ch

SCTS – System of PHOS cooling and 
temperature stabilization

Block
ELMB

Raised floor

Refrigerating unit
2000×800×1400 mm

≈ 600 kg

4 compressors,
7.2 kW, freon R404A

Pumping station
2000×800×1400 mm

≈ 600 kg
Heat-transfer agent: 

C6F14
Fluorocarbon, 3M, USA

Main pipeline ≈ 20 m, 40 mm

Moudle №2

Module №3

Module №4
2 pumps, 1.5 kW,
2.5 Bar, 90 l/min

Magnet L3

CAN BUS

4 compressors 2 pumps On-board computer12 modules I-7000 6 ELMB cards
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Schematic hydraulic circuit of the cooling 
system
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Structure of PHOS detector cooling 
system
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P1,2,3 – pressures
T1,2,3 – temperatures,
VL – liquid level.

2 units
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Refrigerating unit in a pit UX25

alidcscom252
DIM server
AliPhosCool

alidcscom072
DIM client

PVSS II

PVSS GUI
PVSS II

Control computer 
with CR3 Ethernet, 

PVSS

DIM client
AliPhosCool

WEB client
IExplorer

D
IM

H
T

T
P

Electronic control 
unitEthernet, 

DIM

RS-232/485

TRV
unit

TCP/IP

Unit of temperature 
measurements

PWO, FEE

Pumping station

Electronic 
control unitRS-485

ELMB unit
6 × ELMB

CAN BUS

ACS for SCTS: 175 registration 
channels, 20 – control channels

SOFT: Control: AliPhosCool (CRW-DAQ);   GUI: PVSS II SCADA (ETM)
HARD: 12×I-7000 (ICP-DAS), 6×ELMB (CERN), EC3-X33 (ALCO),

NISE 3100 (NEXCOM)
NET: DIM, PVSS, HTTP, TCP/IP, RS-232/485, CAN BUS

VNIIEF
development
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АСS for SCTS: Objectives
• Remote supervision and control: access is denied to the pit during the 
experiment, within months.
• Condition control and diagnostics: a large number of different sensors 
controlling equipment parameters.
• Manufacturing equipment control: pumps, compressors, gates, heaters, 
valves, relays…
• Interlocking system: automatic prevention of hazardous modes of equipment 
operation.
• Alarm warning system: locally – with the aid of GUI; at a distance - through
automatic distribution of email messages basing on the list of experts
• Measurement of process-dependent parameters: T, P, liquid flows and 
levels.
• High-accuracy measurement of PWO matrix temperature
• Stabilization of PWO matrix temperature: it is required to get the 
long-term stability ±0.1°C.
• Record-keeping of measurements: > 200 parameters, ≈ 30 GB/year.



10/10/2011 13Alexei.Kuryakin@cern.ch

АСS for SCTS: Features

• Remote access: surveillance and control is available from 
any place in the world. The system is controlled during most of the time 
by the experts from Sarov. The remote access is well protected.
• High fault-tolerance: watching timers, duplication of major 
assemblies of importance, self-recovery after emergency failures, fault-tolerant 
software (crw-daq).
• High degree of parallelism: the task of control is jointly solved through 
many flows and processes with differentiation of functions.
• Integration to general network system ALICE: the system is 
totally integrated to DCS with the aid of DIM.
• Developed system of blocking: 37 conditions of blocking to prevent 
abnormally dangerous conditions of operation.
• Good warning system: automatic distribution of email messages 
according to the list of experts in case of alarms and system critical failures.
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Control program AliPhosCool
Created in VNIIEF in order to control SCTS

Designed in the development package CRW-DAQ
Development 
of VNIIEF

Within 20 months there 
occurred no failures through

SCTS
crw-daq.ru
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Algorithm of temperature stabilization
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The principle of temperature stabilization consists in periodic compressor switch-on and 
switch-off on a feedback signal from sensor T1 measuring the temperature of heat 
carrier going to the detector cooled modules. The system has got 6 setup variables: task 
temperature of heat carrier stabilization Tstab, temperature gap of ∆T regulation, minimal
Nmin and maximal Nmax number of working compressors, temperature of ТRV overheat
Toverheat and pressure P1 of freon in a discharge header. The algorithm works the following 
way. When temperature T1 of the monitoring sensor is higher than the threshold value
Ton=Tstab+∆T, then, there initiates Nmax of compressors and heat carrier cooling begins. At 
the decrease of T1 lower than Toff=Tstab-∆T threshold there works Nmin of compressors and 
heat carrier becomes warmer. As a result there occurs a stable dynamic cycle of
regulation which period depends on the ∆T . 
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Expanded diagram of matrix PWO №2
temperature in 2009-2011
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Histograms of PWO temperature distribution in sessions
on LHC in 2009/2010 and 2011

The histograms of PWO crystals temperature distribution of module №2 in
session 2009/2010 (left) and session 2011 (right)
The count in each channel of histogram is equal to the time in minutes during which the value of 

temperature was within the range corresponding to this channel

Session 2009/2010: -24.95 ± 0.07 °C
Session 2011: -25.03 ± 0.04 °C

2010 2011 
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Relative operating time X(∆T) depending on 
temperature range ∆T (module №2)

ΔT,°C ΔT,°C

X
(Δ

T
), 

%

Session
2010

Session
2011

X(ΔT) demonstrates time fraction in percent of the total time within which the temperature was beyond the 
Tmean±ΔT interval, while the 100-X(ΔT) value – the fraction of time in per cent during which the 

temperature was within the Tmean±ΔT interval.

It is evident from the diagrams that during more than 90% of operating 
time the PWO crystals in module №2 had the temperature which was 
not beyond the range

-24.95 ± 0.12°C in session 2009/2011 and
-25.03 ± 0.07°C in session 2011.
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Diagram of average compressors loading during twenty-
four hours, in per cent % from the maximal loading
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Loading grew with coefficient ≈ 11 % per year. 
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Diagram of temperature difference dT=T3-T1 at 
the input and output of the cooled module
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The difference grew with the coefficient ≈ 0.18°С per year.
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Conclusions
The assigned task is accomplished:
1. No-failure operation > 20 months
2. Session 2009/2010:-24.95 ± 0.07 °C
3. Session 2011: -25.03 ± 0.04 °C
Discovered features:
1. Growth of average loading of compressors - by 11% per year
2. Growth of temperature difference at the input and output – by 0.18°C per 

year
Possible explanation – heat insulation drench because of atmospheric moisture 

condensation.
 Periodic replacement of heat insulation is required.
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Thank you for your attention

Sarov

Russia


