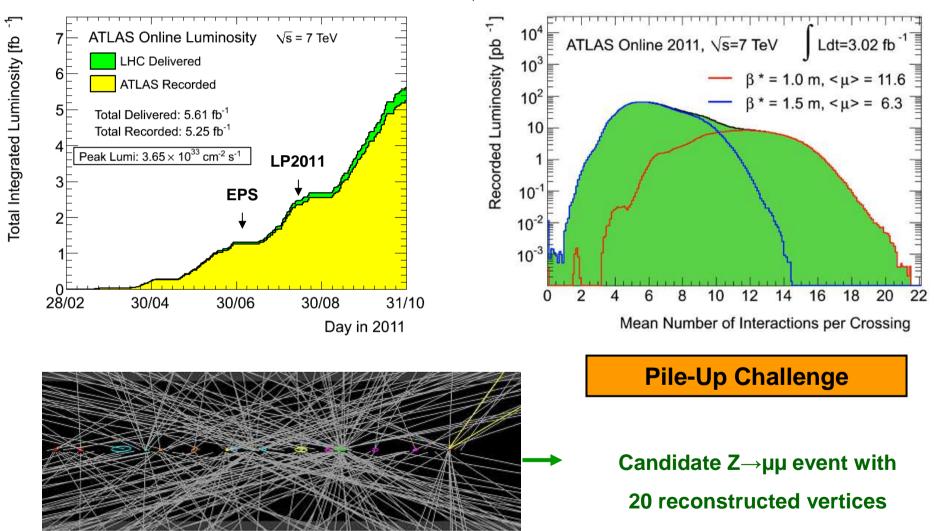


Higgs Hunting in ATLAS

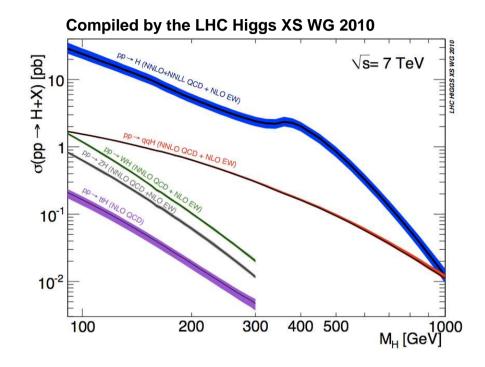
Nansi Andari

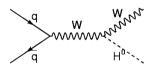
On Behalf of the ATLAS collaboration

Laboratoire de l'Accélérateur Linéaire IN2P3, CNRS - France



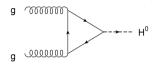
Outline


- ATLAS data taking in 2011
- Standard Model (SM) Higgs production and decay
- > Recent Results for SM Higgs searches:
- $H \rightarrow WW(*) \rightarrow |v|v$
- $\blacksquare H \to ZZ(^*) \to \parallel \parallel$
- $H \rightarrow ZZ \rightarrow ||vv|$
- $H \rightarrow ZZ \rightarrow IIqq$
- $H \rightarrow WW \rightarrow l\nu jj$
- \blacksquare H $\rightarrow \gamma \gamma$
- \blacksquare H $\rightarrow \tau \tau$
- Associated (W→Iv, Z→II) production H→ bb-bar
- > SM Higgs combination
- > MSSM Higgs searches


For future analysis use

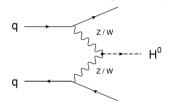
ATLAS DATA TAKING

SM Higgs production at the LHC



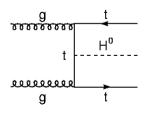
Associated W,Z production

Process known at NNLO


Theoretical uncertainty O(5%)

Gluon Fusion

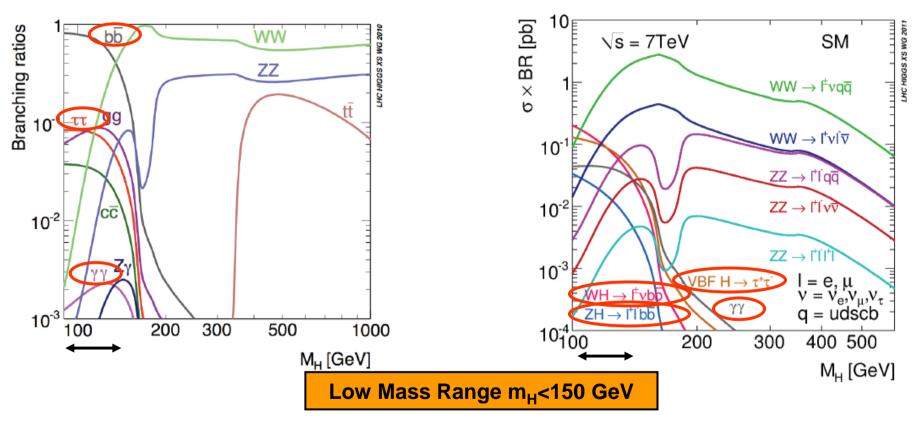
Dominant process at the LHC known at NNLO+NNLL


However large theoretical uncertainty O(15%)

Vector Boson Fusion

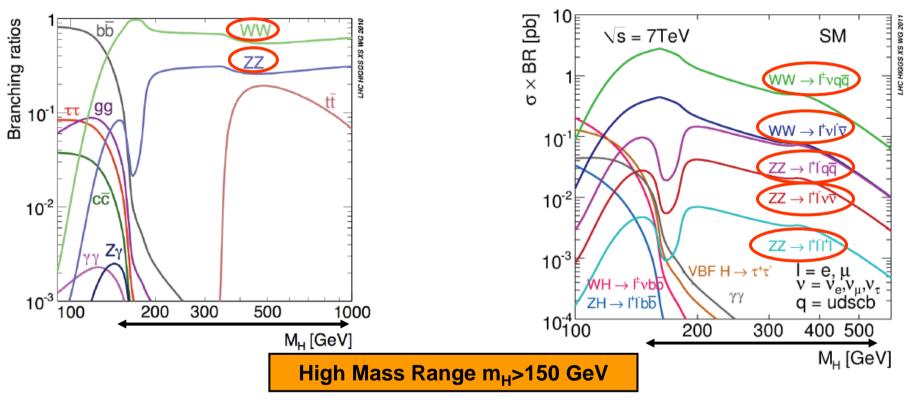
Process known at ~NNLO, theoretical uncertainty O(5%)

Two forward jets and a rapidity gap



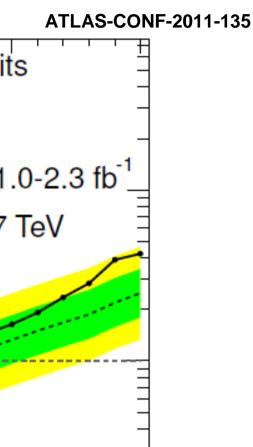
Associated tt-bar production

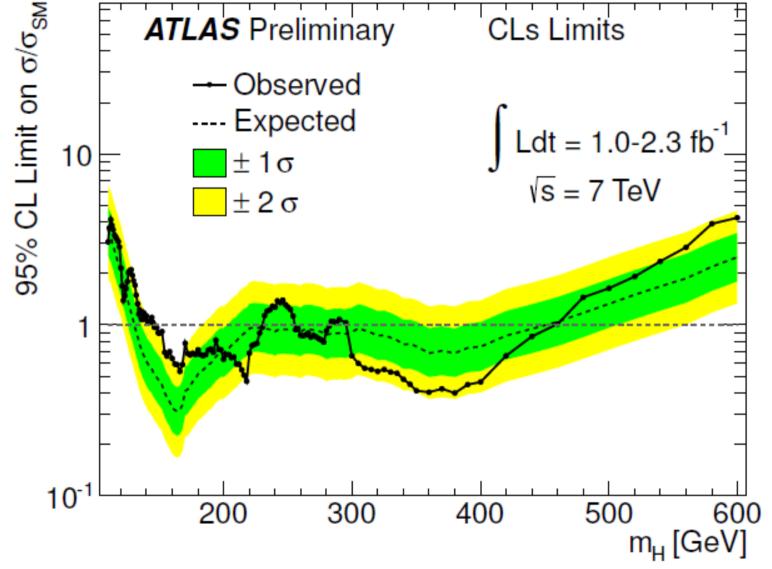
Process known at NLO


Theoretical uncertainty O(15%)

SM Higgs cross sections at the LHC

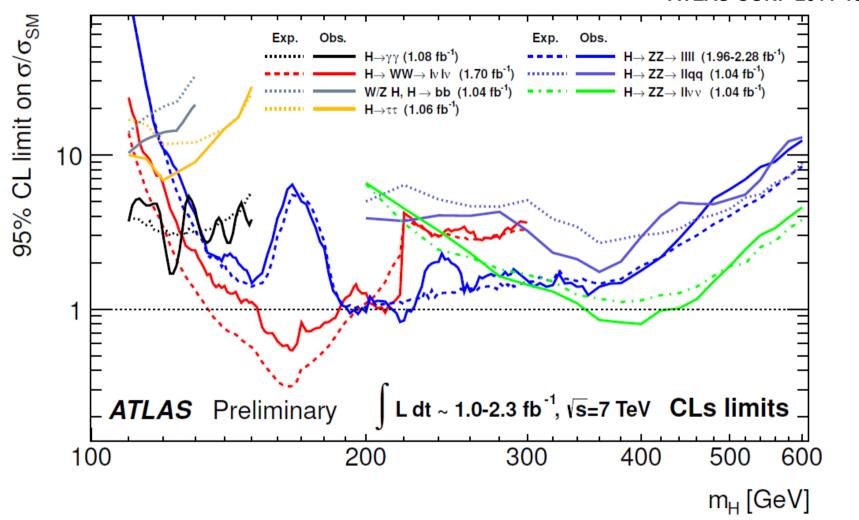
- $H \rightarrow \gamma \gamma$ the best channel in this region: small BR but clean signature
- H→bb-bar dominant BR: huge background (therefore reduce it by asking W and Z associated production , with leptonic decays of W and Z), but important for H to quark couplings
- H→ττ good S/B, enhanced VBF

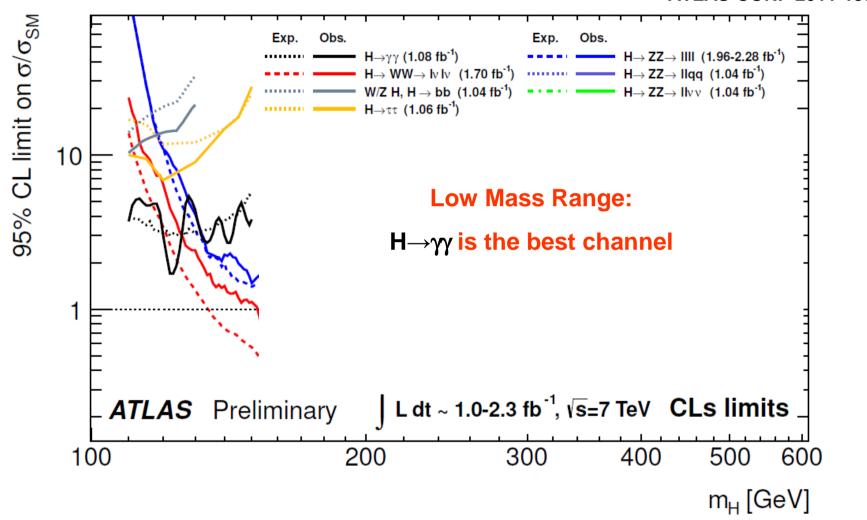

SM Higgs cross sections at the LHC



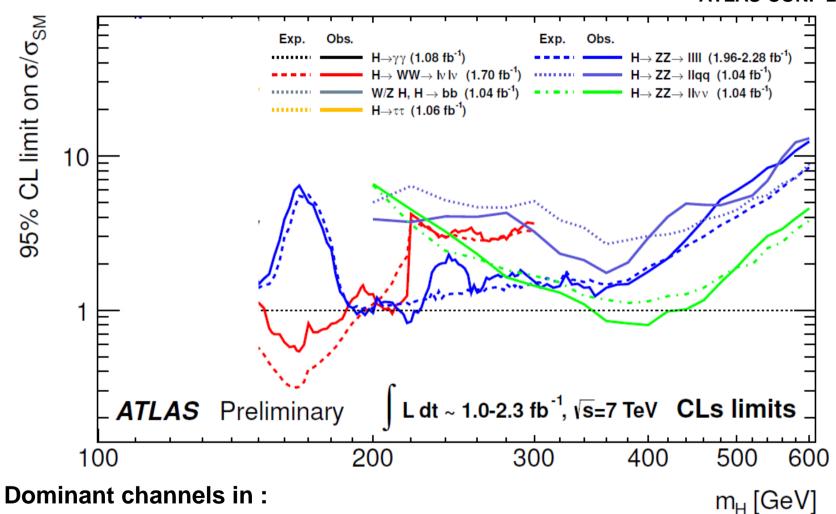
- H→WW^(*): IvIv very important in the intermediate mass (also important for masses >120 GeV)
 - Ivqq: highest rate important at high mass
- H→ZZ^(*): 4l golden channel large S/B (also important for masses >130 GeV)
 - IIvv dominant channel at high mass
 - Ilqq important for high mass but has also much larger background

Status of the Higgs searches in ATLAS


Combined channels: SM Higgs exclusion limits


Individual channels contributions

ATLAS-CONF-2011-135


Individual channels contributions

ATLAS-CONF-2011-135

Individual channels contributions

ATLAS-CONF-2011-135

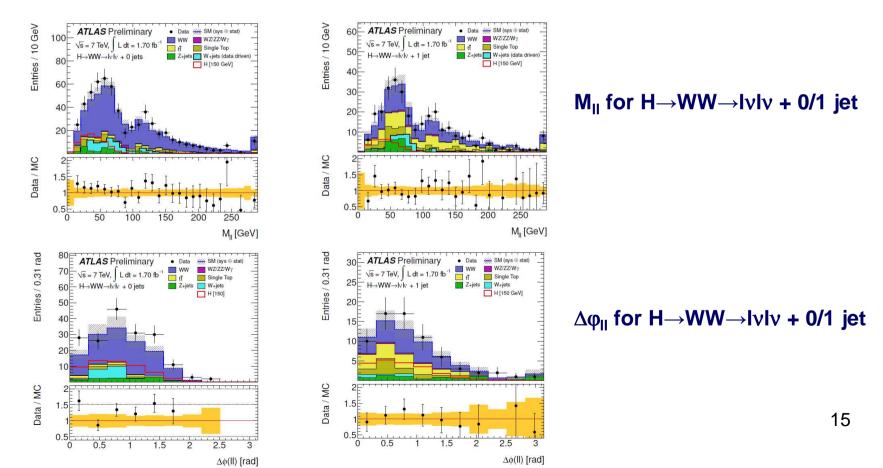
- Intermediate Mass Range: H→WW→IvIv, H→ZZ→4I
- Very High Mass Range: H→ZZ→IIvv

In the following, only the 4 dominant channels will be discussed in details:

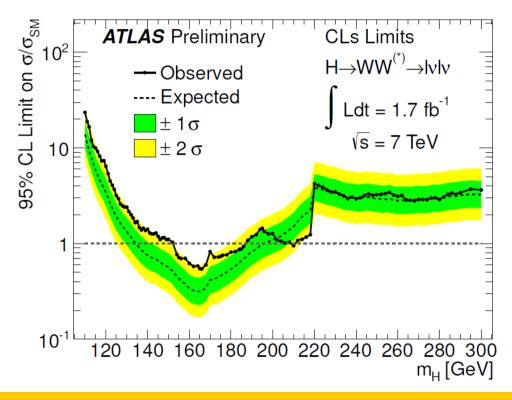
- $H \rightarrow WW \rightarrow I V I V$
- $H \rightarrow ZZ \rightarrow IIII$
- $H \rightarrow \gamma \gamma$
- $H \rightarrow ZZ \rightarrow II \nu \nu$

For the other channels, the selection cuts will not be described (but are written)

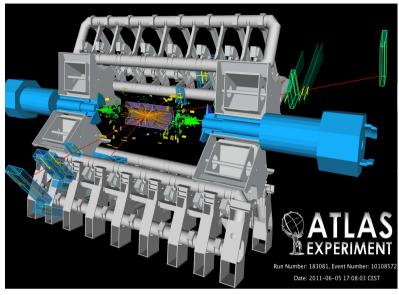
High Mass Higgs Searches

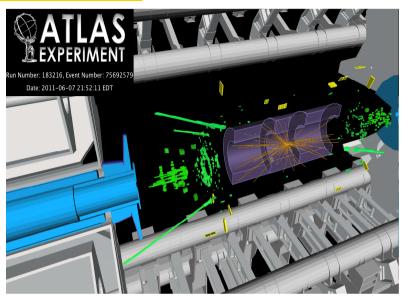


- 2 opposite-sign leptons (e/ μ) with leading pT>25 GeV and subleading pT>20(15)GeV for e(μ).
- 2 leptons DF (different flavour) \rightarrow m_{II}>10 GeV
- 2 leptons SF (same flavour) \rightarrow m_{II}>15 GeV (to suppress bkg from Y, γ^*) and |m_{II}-m_Z|>15 GeV (to suppress background from Z)
- $E_{T,rel}^{miss}$ >40 (25) GeV if SF (DF) 2 leptons (to suppress bkg from QCD multijets and Drell-Yan)
- 2 categories (H+0jet) and (H+1jet)
- (H+0jet) : pT(II)>30 GeV (to suppress background from Z+jets and WW)
- (H+1jet) : bjet veto (to suppress top background), pT(tot)<30 GeV and Z→ττ veto
- Upper bound on m_{II} is applied depending on m_H (to suppress top and WW background)
- Change of the selection at 220 GeV.

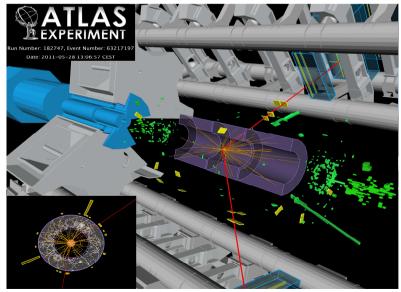

Main Backgrounds

- <u>WW, tt-bar, single top, Z/γ*+jets, diboson (WZ,ZZ,Wγ):</u> from MC corrected by scale factors derived from control samples
- •W+jets: from data using loosened identification and isolation criteria


Dominant systematic uncertainties: JES, E_T^{miss} measurement (on signal ±6.1%)


SM Higgs boson excluded at 95%CL between 154-186 GeV.

No significant excess is observed, the largest observed deviation from the expected background is 2σ


ZZ(*)→4l event displays

4μ candidate m=143.5GeV

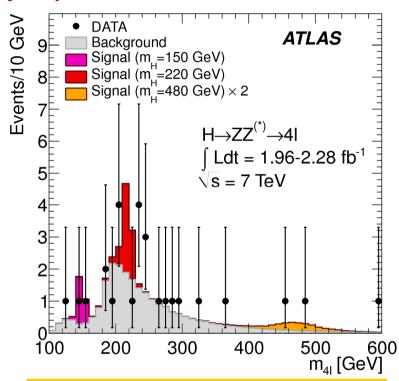
4e candidate m=270.1GeV

2μ2e candidate m=209.7GeV

arXiv:1109.5945v1 [hep-ex]

Search for a narrow resonance over a continuum. Analysis performed between 110-600 GeV

Selection cuts

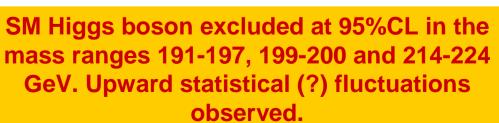

Trigger: e (pT>20-22GeV) / μ (pT>18GeV)

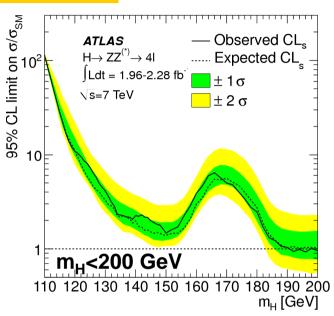
2 SF opposite sign isolated lepton pairs with pT>7GeV. At least 2 leptons with pT>20GeV. Lepton pair mass cut: $|m_{12}-m_Z|<15$ GeV, $m_{Threshold}(m_{4l})< m_{34}<115$ GeV

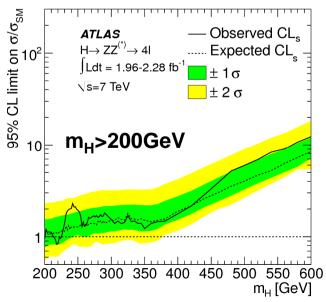
Requirements on impact parameter for m_{4l} <190GeV (rejects Zbb-bar and tt-bar)

Main Backgrounds


- ZZ^(*): from MC theoretical uncertainty (15%)
- tt-bar: from MC theory normalization uncertainty (10%), test on data with opposite sign e/µ pairs.
- **Z+jets:** normalized using data (control sample regions) uncertainties 20-40%




27 observed candidates


24±4 expected candidates

FWHM (full width at half maximum) for m_H=130GeV~4.5(4μ) to 6.5(4e) GeV

ATLAS-CONF-2011-148

 Best channel at high mass (analysis includes contribution from H→WW→IvIv) $ZZ \rightarrow II \nu \nu$

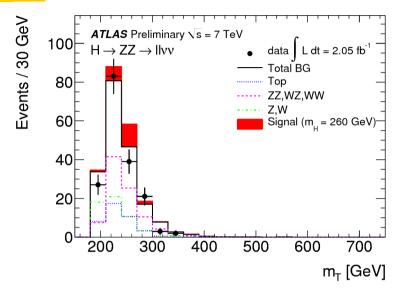
New!

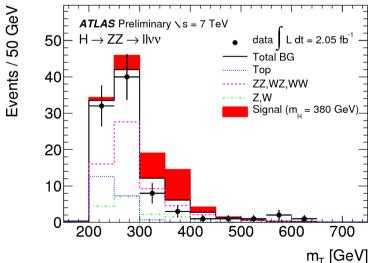
• Identify Z→II:

Trigger: e (pT>22GeV) / μ (pT>18GeV)

2 SF opposite sign isolated leptons (e/ μ) with $|m_{II}-m_{Z}|<15 GeV$

• Identify $Z\rightarrow vv$ if $m_H>200$ GeV:

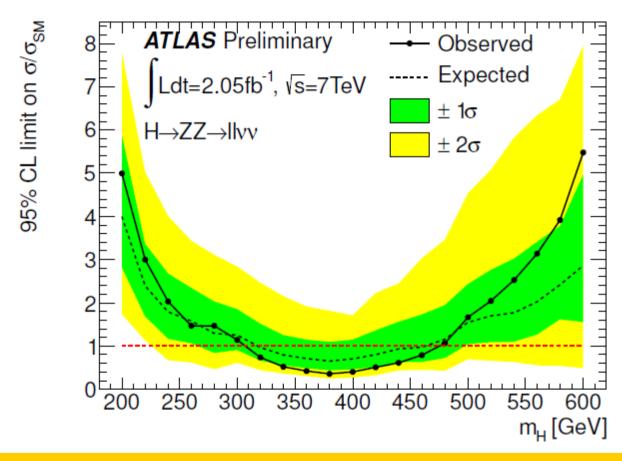

Reject event with $\Delta \phi(pT^{miss},pT^{jet})<0.3$ to reduce bkg with fake $E_T^{miss} \to mismeasured$ jets


E_Tmiss>66 (82)GeV in low (high) mass region

• Events with one or more b-tagged jets are rejected (to reduce top bkg)

Main Backgrounds

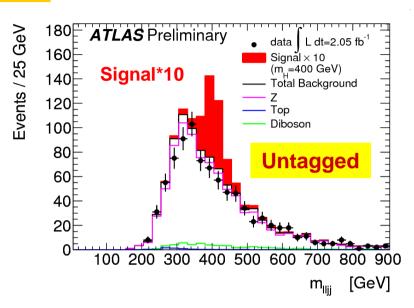
- Diboson, Z, tt-bar: from MC
- <u>W</u>: normalization obtained data/MC of likesign lepton pair events with high ETmiss
- **QCD** multijet: using data sample with loosened electron selection (µ-channel negligible)

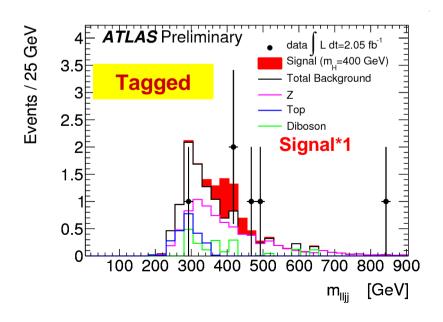


$$m_{\rm T}^2 \equiv \left[\sqrt{m_{\rm Z}^2 + |\vec{p}_{\rm T}^{\ \ell\ell}|^2} + \sqrt{m_{\rm Z}^2 + |\vec{p}_{\rm T}^{\ {
m miss}}|^2} \right]^2 - \left[\vec{p}_{\rm T}^{\ \ell\ell} + \vec{p}_{\rm T}^{\ {
m miss}} \right]^2$$

Dominant systematic uncertainties: JES (+5.9-4.0% on expected signal), b-tagging efficiency.

No excess is observed! A SM Higgs boson is excluded at 95%CL in the mass range 310- 470 GeV.

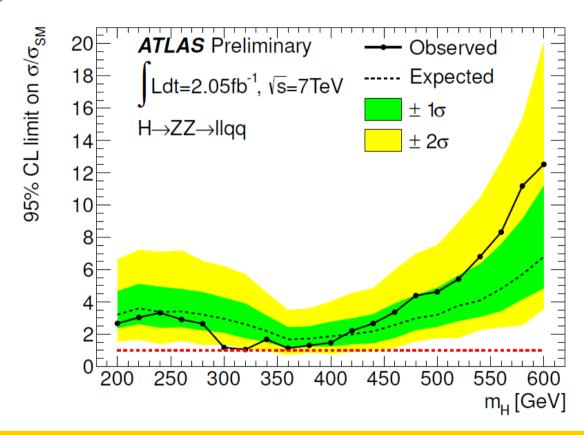

ZZ→llqq



- 2 on-shell Z's (if m_H>2m_Z)
- isolated leptons pT>20 GeV with |m_{II}-m₇|<15GeV
- -2 jets pT>25 GeV with 70 < m $_{jj}$ <105 GeV and m $_{jj}$ constrained to Z mass
- For mH>300 GeV: $\Delta \phi_{II.ii}$ <90° & 2 jets pT>45 GeV
- E_T^{miss} <50GeV (to reduce bkg from tt-bar)
- Categories: 2b-tagged jets and untagged jets (less than 2b tags)

Main Backgrounds

- <u>Z+jets:</u> shape from MC and normalization from data using sidebands 40<m_{jj}<70 GeV or 105 <m_{jj}<150 GeV
- top: shape from MC and normalization from data using sidebands 60<m_{||}<76 GeV or 106<m_{||}<150 GeV
- ZZ, WZ, W+jets: from MC
- QCD multijet: using data sample with loosened electron selection (µ-channel negligible)



Dominant systematic uncertainties: JES (+3.7-10.4% on expected signal), b-tagging efficiency, Z+jets normalization

Observed limit, SM-like Higgs boson with a production rate of 1.2 to 12 SM cross section is excluded at 95%CL. Expected limit 1.7 to 6.7 SM cross section.

- Largest σ*BR
- 2 on-shell W's (if m_H>2m_W)

Trigger: e (pT>20GeV) / μ (pT>18GeV)

Exactly one reconstructed isolated lepton (e/ μ) with pT>30 GeV

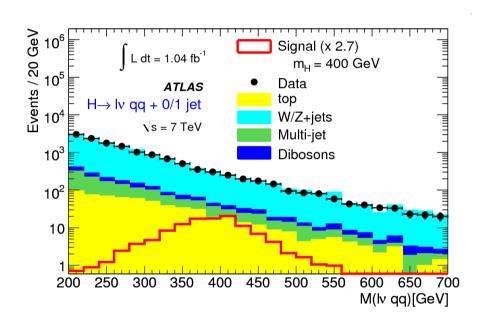
E_Tmiss >30 GeV

Exactly 2 jets (H+0jet) or 3 jets (H+1jet) with pT> 25 GeV and the closest mass to W of the jet pair has to satistfy $71 < m_{ii} < 91$ GeV

m(Iv)=m(W)

• Events with one or more b-tagged jets are rejected (to reduce top bkg)

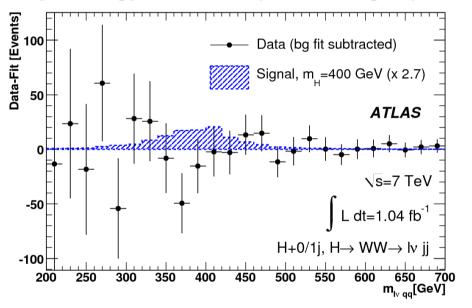
Main Backgrounds

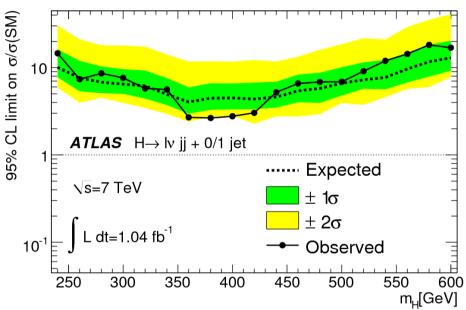

• W+jets: from MC

• Z+jets, tt-bar, diboson: from MC

• QCD multijet: using data sample with loosened electron selection (µ-channel negligible)

arXiv:1109.3615v1 [hep-ex]

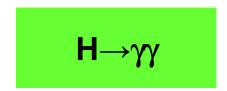



Observed	41687
Expected Bkg	42600±1200
Expected Sig (mH=400GeV)	58±15

WW→lvjj

A double exponential is used to fit the data (background model).

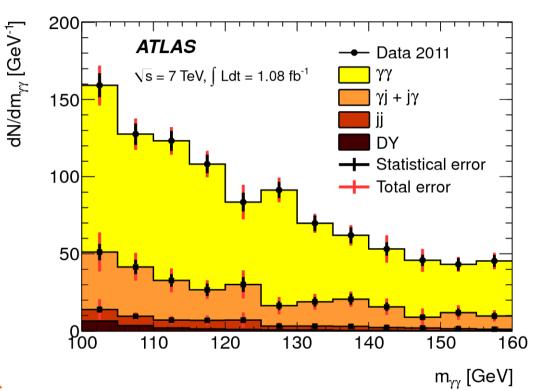
Dominant systematic uncertainties: JES (17% on expected signal), theory (19.4%), jet energy resolution (8.6% on signal)



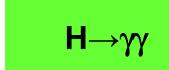
The difference between the mass distribution in data and the fitted bkg → no indication of any significant excess

The upper limit at mH=400GeV is 2.7 SM cross section. The expected limit for this mass is around 5 SM cross section.

Low Mass Higgs Searches


arXiv:1108.5895v1 [hep-ex]

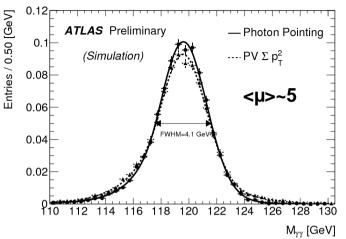
Selection cuts


- Trigger: 2γ (pT>20GeV)
- pT(γ_1)>40 GeV & pT(γ_2)>25 GeV
- $|\eta| < 1.37 & 1.52 < |\eta| < 2.37$
- 2 tight isolated photons required
- 5 categories (η bins and converted/unconverted)

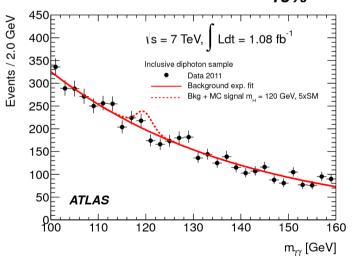
Main Backgrounds

- irreducible bkg γγ
- reducible:
- one or more jets misidentified as photons
- Drell-Yan: electrons misidentified as photons

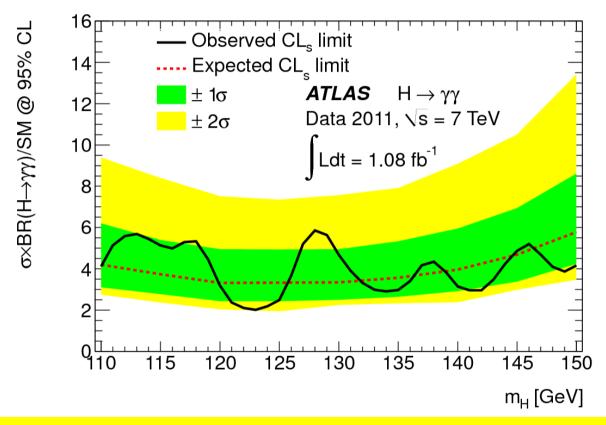

The purity is about 72%


Mass Reconstruction:

$$m_{\gamma\gamma}^2 = 2E_1^{\gamma} E_2^{\gamma} (1 - \cos \alpha_{12})$$

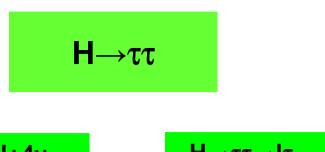

A pointing method (using the first two samplings of the LAr calorimeter, or the first sampling and the conversion point for converted photons) is used to determine the vertex position \rightarrow Its resolution is ~1.6 cm (unconverted photons)

Signal Model : Crystal-Ball + gaussian from MC sample


Less tail with pointing (robust with pile-up increasing) improvement of ~10%

Background Model: fit of the data with an exponential

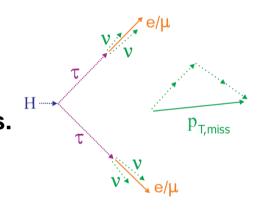
$H{\to}\gamma\gamma$


Dominant Systematic uncertainties: energy resolution (12%) and photon ID efficiency(10%)

No significant excess observed.

Observed exclusion at 95%CL between 2 and 5.8 SM cross section.

The variation of the observed limit around the expected limit is consistent with the expected statistical fluctuations.



Main challenge: ττ mass reconstruction technique

• Il analysis: collinear approximation assumes a strict collinearity of the visible and invisible τ decay products.

$$x_{1,2} = \frac{p_{vis1,2}}{(p_{vis1,2} + p_{mis1,2})} \qquad m_{\tau\tau} = \frac{m_{vis}}{\sqrt{x_1 x_2}}$$

• Ih: MMC (missing mass calculator) new mass reconstruction technique

A more sophisticated version of the collinear approximation (described in details in ATLAS-CONF-2011-132).

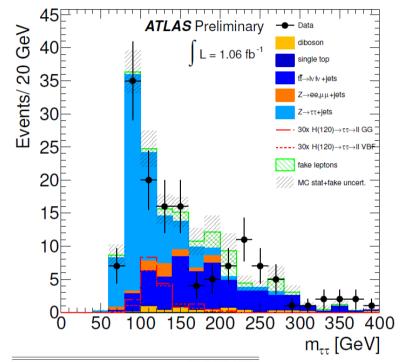
A gain in acceptance (also in resolution) is reached with this new method.

$H\rightarrow \tau\tau \rightarrow II+4\nu$

Selection cuts

Trigger: 2e (pT>12GeV)/ 1μ (pT>18GeV)/ $e\mu$ (1e pTe>20GeV)

2 isolated leptons with 30<m $_{II}$ <75GeV for same flavour (SF) (to reduce Z \rightarrow II) and 30<m $_{II}$ <100GeV for different flavour (DF)


At least one jet with pT>40GeV (enhances VBF and useful for collinear approximation)

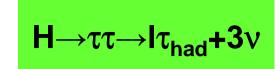
E_Tmiss >30GeV for SF and E_Tmiss >20GeV for DF

Mass reconstructed with collinear approximation

Main Backgrounds

- $Z/\gamma^*(\rightarrow l^+l^-)$ +jets estimated with the τ -embedding method from $Z\rightarrow \mu^+\mu^-$ data
- tt-bar, single t, Z →I⁺I⁻ and EW diboson: from MC
- <u>fake leptons:</u> normalisation and shape from a data-driven template method

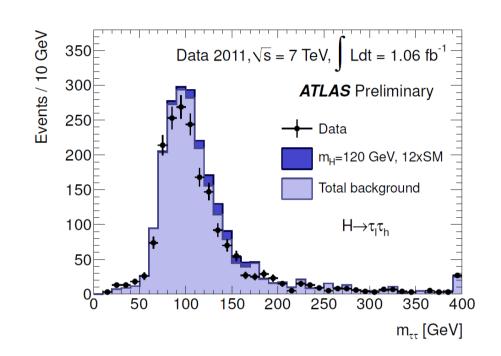
	$ee + \mu\mu + e\mu$
$Z/\gamma^* \to \tau^+ \tau^-$	25.4 ± 2.7
$Z/\gamma^* \rightarrow \ell^+\ell^- (\ell=e,\mu)$	3.7 ± 1.2
$tar{t}$	13.2 ± 2.2
Single-t	1.2 ± 0.5
Di-boson	1.6 ± 0.6
Backgrounds with fake Leptons	2.2 ± 0.9
Total Background expectation	47.4 ± 3.9
Observed data	46
SM signal $gg \rightarrow H$	VBF
$m_{\rm H} = 110 {\rm GeV} - 0.30 \pm 0.06$	0.35 ± 0.02

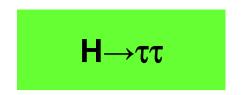

Observed	data	46
SM signal	$gg \rightarrow H$	VBF
$m_H = 110 \text{ GeV}$	0.39 ± 0.06	0.35 ± 0.02
$m_H = 115 \text{ GeV}$	0.39 ± 0.06	0.35 ± 0.02
$m_H = 120 \text{ GeV}$	0.44 ± 0.05	0.38 ± 0.02
$m_H = 130 \text{ GeV}$	0.40 ± 0.04	0.33 ± 0.01
$m_H = 140 \text{ GeV}$	0.21 ± 0.02	0.19 ± 0.01

Expected 47.4±3.9

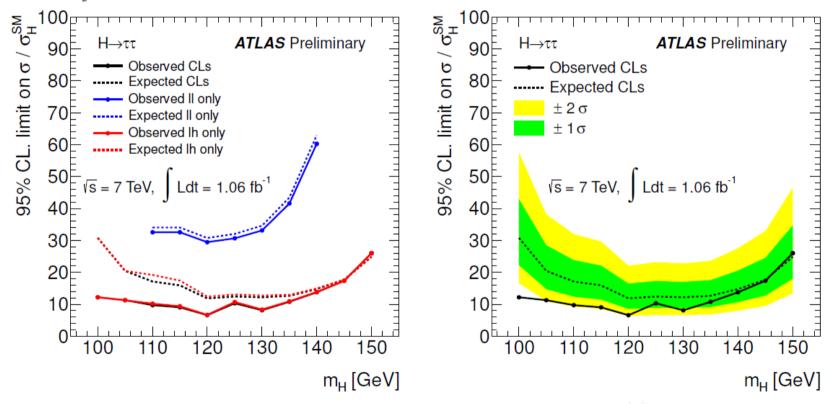
Observed 46

Signal 120GeV 0.82 31


One electron (muon) pT>25(20) GeV and one τ_{had} pT>20 GeV and E_{T}^{miss} >20 GeV


The transverse mass of the lepton and missing energy of the system is required to be smaller than 30 GeV (suppresses $W(\rightarrow lv)+jet$)

Mass reconstructed with MMC


Main Backgrounds

- $Z/\gamma^* \rightarrow \tau^+\tau^-$: estimated with the τ -embedding method from Z-> $\mu^+\mu^-$ data
- Other: estimated using same sign events and in part using the MC for the difference between the number of opposite signe and same sign events.

Main Systematic Uncertainties: JES, E_T^{miss} Reconstruction (uncertainty on signal +19-16%) and theory.

No excess is seen. Combined exclusion limits of the order of 10 to 20 times the SM cross section. $H \rightarrow \tau\tau \rightarrow I\tau_{had} + 3\nu$ is significantly more sensitive than the $H \rightarrow \tau\tau \rightarrow II + 4\nu$.

ZH→IIbb-bar

Entries / 10 GeV

ATLAS-CONF-2011-103

• Identify Z:

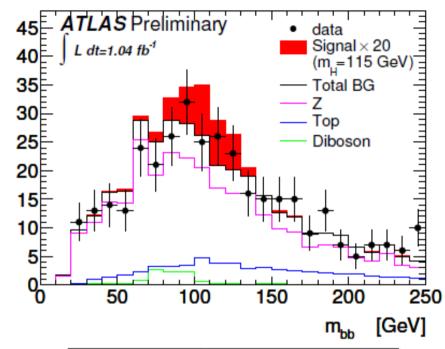
Trigger: - e (pT>20GeV)/ μ (pT>18GeV)

- 2e/2µ pT>12GeV

2 leptons pT>25GeV

76<mll<106GeV

- 2 b-tagged leading jets (reject Z+jets)
- E_T^{miss}<50GeV (reject tt-bar)
- Search range 110-130 GeV


Main Backgrounds

•Z+jets: Shape from MC and normalization from sideband (m_{bb} <80GeV and 140< m_{bb} <250GeV)

•<u>Diboson ZZ,WZ:</u> from MC

•Top quark: from MC

•QCD multijet: e-channel from data by reverting electron quality cuts and μ-channel neglected

Source	expecte events	ed	(stat.)		(sys.)	
Z+jets	261.0	±	7.8	±	24.6	
Top-quark	52.0	\pm	1.3	±:	10.6	
Multijet	1.4	\pm	0.4	± :	1.4	
ZZ	9.2	±	1.1	±:	2.3	
WZ	1.1	±	0.3	±	0.3	
Total background	324.7	±	8.0	±	27.9	Ī
Data	329					
Signal $m_H = 110 \text{ GeV}$	2.22	±	0.09	±	0.43	
Signal $m_H = 115 \text{ GeV}$	1.91	±	0.07	±	0.38	Ī
Signal $m_H = 120 \text{ GeV}$	1.58	±	0.06	±	0.32	
Signal $m_H = 125 \text{ GeV}$	1.44	±	0.05	\pm	0.28	
Signal $m_H = 130 \text{ GeV}$	1.02	±	0.04	±	0.20	

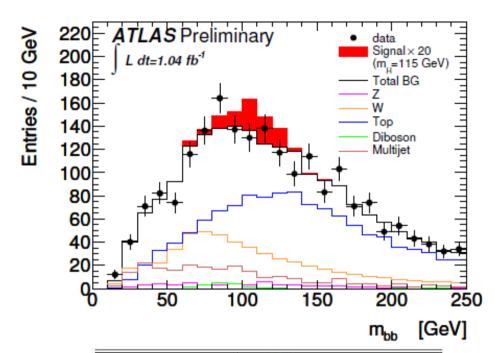
• Identify W:

WH→l∨bb-bar

ATLAS-CONF-2011-103

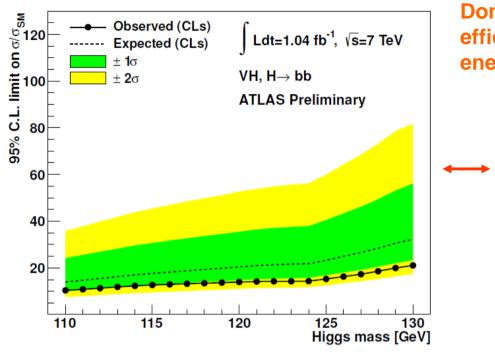
Trigger: e (pT>20GeV)/ μ (pT>18GeV)

1 lepton pT>25GeV


M_T>40GeV

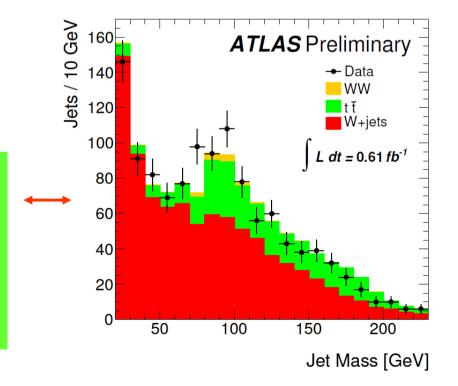
E_Tmiss>25GeV

- Exactly 2 jets (to reduce top background from tt-bar→bW(→lv) b-barW(→qq))
- These jets have to be b-tagged (to reduce W+jets)


Main Backgrounds

- •<u>Top quark:</u> Shape from MC and normalization from sideband $(40 < m_{bb} < 80 \, \text{GeV})$
- •<u>W+jets:</u> Shape from untagged m_{jj} in data and normalization from sideband (same as top)
- •Z+jets: Shape from MC and normalization like ZH analysis
- •Diboson WW,WZ: from MC
- •QCD multijet: from data by reverting isolation cuts

1201	expected	i			
Source	events		(stat.)		(sys.)
Z+jets	54.4	±	3.9	±	12.3
W+jets	466.7	\pm	1.4	±	66.5
Top-quark	1141.8	\pm	8.8	\pm	78.0
Multijet	193.0	±	9.4	±	96.5
WZ	16.1	\pm	2.2	±	3.4
WW	4.8	±	1.1	±	1.4
Total background	1876.8	±	13.7	±	147.2
Data	1888				
Signal $m_H = 110 \text{ GeV}$	6.72	±	0.31	±	1.20
Signal $m_H = 115 \text{ GeV}$	5.25	±	0.30	±	0.97
Signal $m_H = 120 \text{ GeV}$	4.54	±	0.25	±	0.83
Signal $m_H = 125 \text{ GeV}$	4.08	±	0.21	±	0.77
Signal $m_H = 130 \text{ GeV}$	3.28	±	0.17	±	0.62

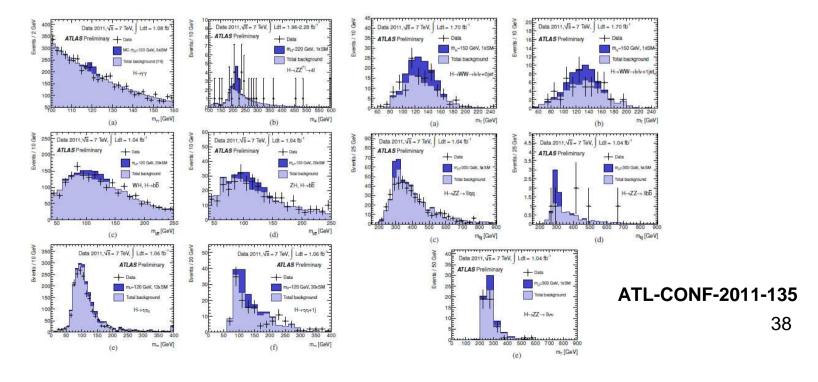

H→bb-bar

Dominant Systematic uncertainties: b-tagging efficiency (on signal efficiency +37-33%) and jet energy scale (on signal efficiency +21-17%)

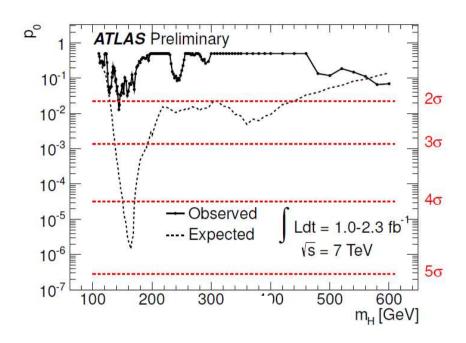
The combined (WH+ZH) exclusion ranges between 10 to 20 times the SM cross section

→ No Excess is observed

Possible improvements of bb-bar analysis using boosted jet pairs and jet substructure technique

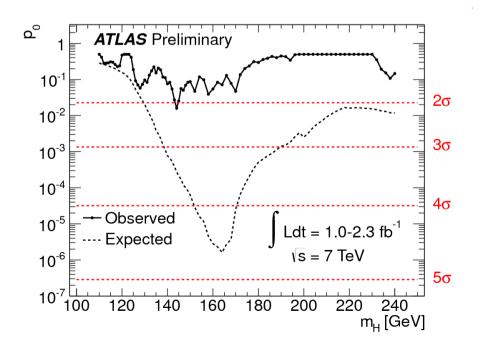

First results are encouraging: observation of W→qq from tt→bW(→lv)bW(→qq)

ATLAS SM Higgs Combination

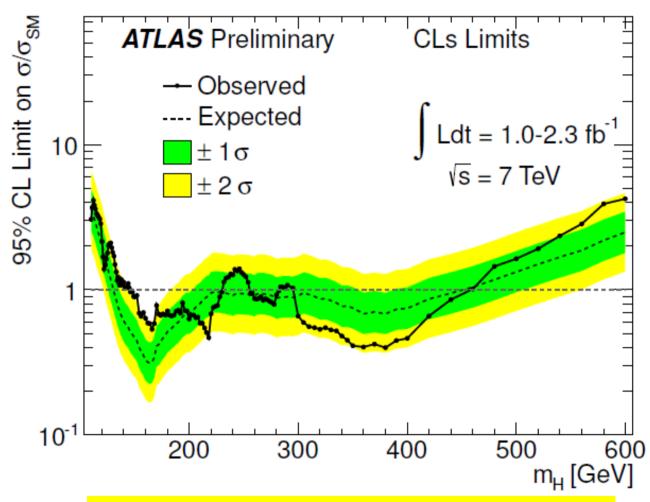

ATLAS SM Higgs Combination

	Н -	$\rightarrow \tau^+ \tau^-$	$H o \gamma \gamma$	$H o b ar{b}$	$H \rightarrow WW^{(*)}$	$H \rightarrow ZZ^{(*)}$		
	$ au_{\ell} au_{had}$	$ au_\ell au_\ell + jet$			$\ell \nu \ell \nu$ 0-jet 1-jet	$\ell\ell\ell\ell$	$\ell\ell\nu\nu$	$\ell\ell qq$
\mathcal{L} (fb ⁻¹) Old	XX T	1770	1.08	1.04	1.04	1.04-1.21	1.04	1.04
\mathcal{L} (fb ⁻¹) New	1.06	1.06	1.08	1.04	1.70	1.96-2.28	1.04	1.04
Analysis Opt.	No	No	No	No	Yes	No	No	No

Most of the signal-related systematic uncertainties are correlated. The background-related systematic uncertainties are typically uncorrelated (in particular when estimated from data control samples)



ATLAS SM Higgs Combination



The most extreme value of the p0 which is observed at 144 GeV (due to the small excess in the WW→lvlv channel and one event observed in the ZZ*→ 4l analysis) has a significance of 2σ

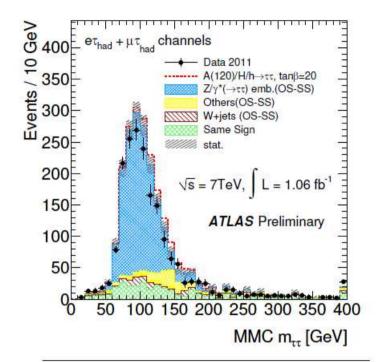
p0: probability that a bakground only experiment is more signal-like than the observed one.

ATLAS SM Higgs Combination: Combined channels

Excluded at 95% CL mass regions

146 to 232, 256 to 282 and 296 to 466 GeV

MSSM Higgs Searches

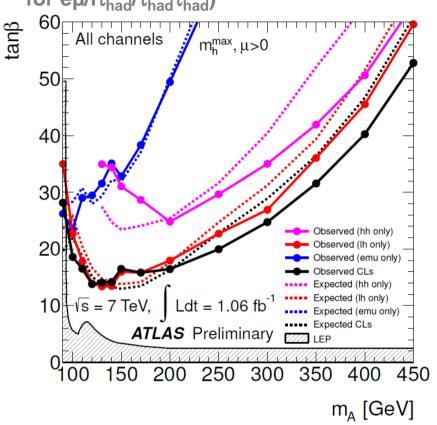

- One of the most promising channel
- Production: gg→A/H/h and associated bbA/H/h

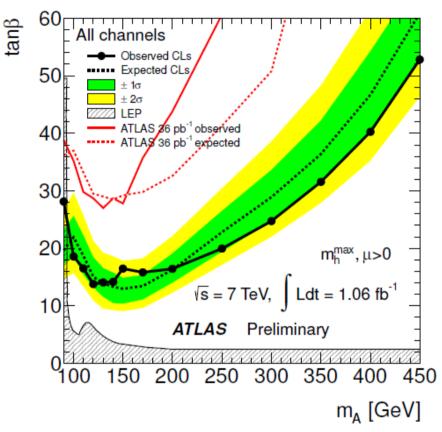
Event selection and mass reconstruction:

- eµ4v: one isolated electron pT>22 GeV(15), muon pT>10 GeV(20) if event triggered by the e (µ) trigger and E_T^{miss} . Mass reconstruction $m_{\tau\tau}$ effective.
- e/μτ_{had}3ν: Exactly one isolated e(μ) with pT>25(20)GeV and one oppositely-charged τ_{had} candidate pT>20 GeV and E_T^{miss} >20GeV. Veto on Z \rightarrow II with loose lepton ID cuts. Missing Mass Calculator (MMC) $m_{\tau\tau}$.
- $\tau_{had}\tau_{had}$ 2v: Exactly 2 oppositely charged τ_{had} (pT>45,30GeV) and E_{T}^{miss} >25GeV. Mass reconstruction $m_{\tau\tau}$ visible.

Main Backgrounds:

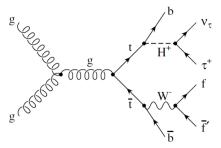
 Z/γ^* , W+jets, top quark, EW diboson are dominant bkg for eµ and $I\tau_{had}$. QCD jet processes are dominant bkg in the $\tau_{had}\tau_{had}$ final state.




Final state	Exp. Background	Data
еµ	$(2.6 \pm 0.2) \times 10^3$	2472
ℓau_{had}	$(2.1 \pm 0.4) \times 10^3$	1913
$ au_{had} au_{had}$	233^{+44}_{-28}	245
Sum	$(4.9 \pm 0.6) \times 10^3$	4630

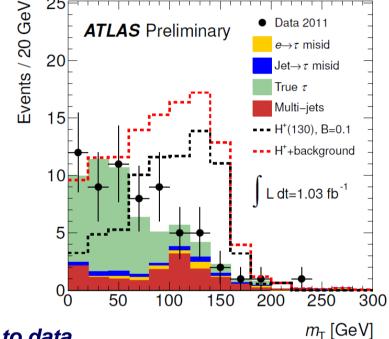
Systematic uncerntainties included

MSSM H/A/h→ττ


Dominant systematic uncertainties: energy scales and resolution (1/+30-23/+9-8% for eµ/ $l\tau_{had}/\tau_{had}\tau_{had}$)

The $I_{\tau_{had}}$ final state provides the most stringent limit. The eµ and $\tau_{had}\tau_{had}$ final states lead to improvements of the exclusion limits for small and high Higgs boson masses resp.

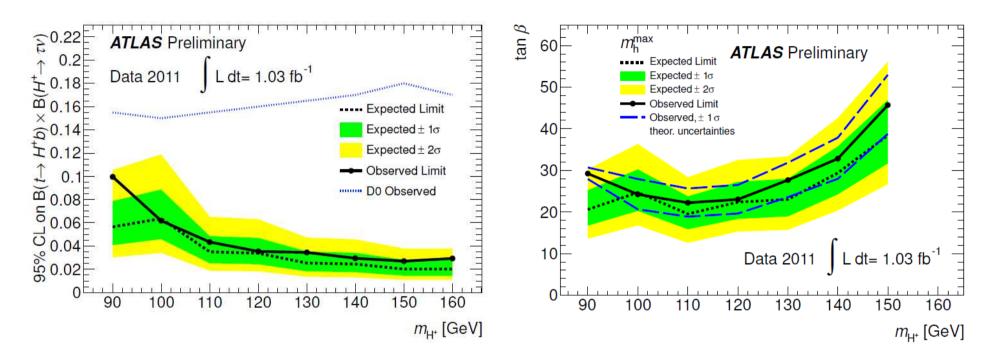
No significant excess is observed in any of the final states.



Selection cuts

- τ jet with pT>35 GeV. Events with a second identified τ jet pT>20GeV, an electron pT>20 GeV or a muon pT>10GeV are vetoed
- E_T^{miss} >40 GeV. Events with large E_T^{miss} due to the limited resolution of the energy measurement are reject with the cut: E_T^{miss} / (0.5 $\sqrt{\Sigma}E_T$) > 8 GeV^{1/2}
- At least one b-tagged jet required

- true τ jets: embedding method (from $Z \rightarrow \mu^+\mu^-$ data)
- multi-jet: shape from sideband region and fitting it to data

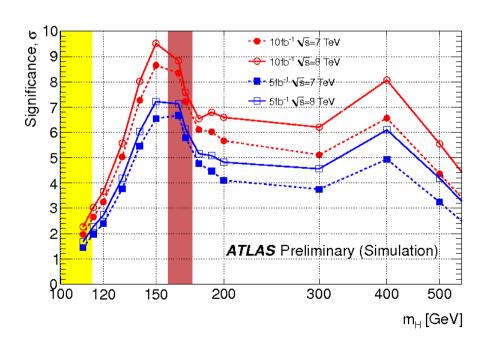


- jet $\rightarrow \tau$ misidentification: with intrinsic E_T^{miss} and with γ +jets control samples
- $e \rightarrow \tau$ misidentification: from $Z/\gamma^* \rightarrow ee$ control samples

	Events with/from						
	true τ jets	jet $\rightarrow \tau$ mis-id	$e \rightarrow \tau$ mis-id	multi-jet	expected (sum)	data	
$m_{\rm T} > 40~{\rm GeV}$	21 ± 5	2.4 ± 0.7	1.9 ± 0.2	12 ± 5	37 ± 7	43	44

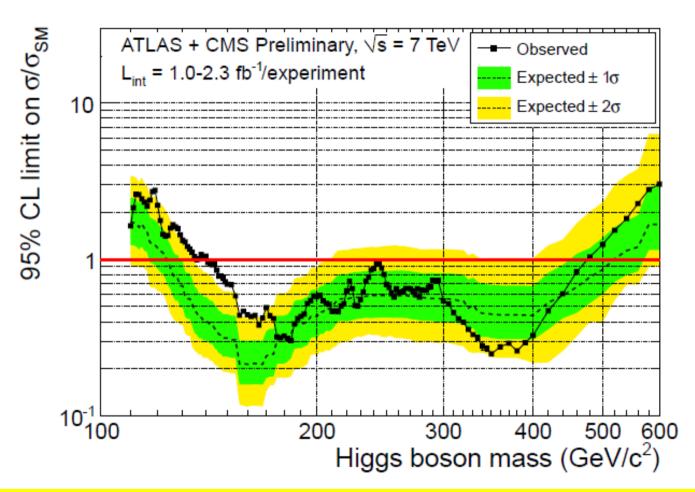
$H^+ \rightarrow \tau_{had}^+ + \nu$

Dominant systematic uncertainties: jet energy scale (2.5-14%) and resolution (10-30%)


Values of BR(t \rightarrow bH+) * BR(H+ \rightarrow τ_{had} ++ ν) larger than 0.03-0.10 are excluded in the H+ mass range 90-160 GeV.

In the context of m_h^{max} , values of $tan\beta$ above 22-30 are excluded in the H+ mass range 90-140 GeV.

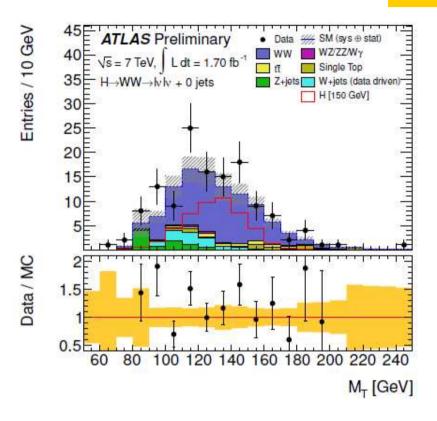
Conclusions and Perspectives

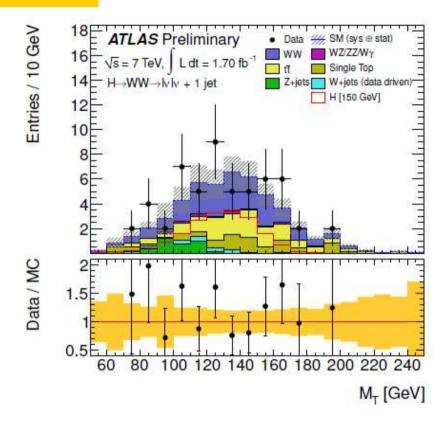

- No significant excess was observed in ATLAS for the mass range 110-600 GeV.
- Mass excluded for SM Higgs boson: 146 to 232, 256 to 282 and 296 to 466 GeV
- A 95% CL exclusion for the whole mass range could be achieved by combining ATLAS-CMS results for an integrated luminosity of about 4-5 fb⁻¹.

2012 (with hopefully additional 15 to 20 fb⁻¹) should hopefully bring more answers!

Combination ATLAS+CMS

New!




Observed data are compatible with the background-only hypothesis SM Higgs boson is excluded at 95%CL or higher in the mass range 141- 476 GeV. The region from 146 to 443 GeV is excluded at 99%CL, except three small regions between 220 and 320 GeV

Thank you for your attention!

Backup Slides

 M_T for $H \rightarrow WW \rightarrow l\nu l\nu + 0/1$ jet

Collinear Approximation

$$\mathbb{E}_{X} = P_{v1} \cdot \cos(\theta_{1}) \cdot \cos(\varphi_{1}) + P_{v2} \cdot \cos(\theta_{2}) \cdot \cos(\varphi_{2})$$

$$\mathbb{E}_{Y} = P_{v1} \cdot \cos(\theta_{1}) \cdot \sin(\varphi_{1}) + P_{v2} \cdot \cos(\theta_{2}) \cdot \sin(\varphi_{2})$$

MMC

$$\begin{split} E_{\mathrm{T}_x} &= p_{\mathrm{mis_1}} \sin \theta_{\mathrm{mis_1}} \cos \phi_{\mathrm{mis_1}} + p_{\mathrm{mis_2}} \sin \theta_{\mathrm{mis_2}} \cos \phi_{\mathrm{mis_2}} \\ E_{\mathrm{T}_y} &= p_{\mathrm{mis_1}} \sin \theta_{\mathrm{mis_1}} \sin \phi_{\mathrm{mis_1}} + p_{\mathrm{mis_2}} \sin \theta_{\mathrm{mis_2}} \sin \phi_{\mathrm{mis_2}} \\ M_{\tau_1}^2 &= m_{\mathrm{mis_1}}^2 + m_{\mathrm{vis_1}}^2 + 2 \sqrt{p_{\mathrm{vis_1}}^2 + m_{\mathrm{vis_1}}^2} \sqrt{p_{\mathrm{mis_1}}^2 + m_{\mathrm{mis_1}}^2} \\ &\qquad \qquad - 2 p_{\mathrm{vis_1}} p_{\mathrm{mis_1}} \cos \Delta \theta_{vm_1} \\ M_{\tau_2}^2 &= m_{\mathrm{mis_2}}^2 + m_{\mathrm{vis_2}}^2 + 2 \sqrt{p_{\mathrm{vis_2}}^2 + m_{\mathrm{vis_2}}^2} \sqrt{p_{\mathrm{mis_2}}^2 + m_{\mathrm{mis_2}}^2} \\ &\qquad \qquad - 2 p_{\mathrm{vis_2}} p_{\mathrm{mis_2}} \cos \Delta \theta_{vm_2} \end{split}$$