

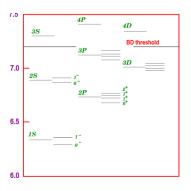
B_C production at LHCb

O.Yushchenko (on behalf of the LHCb collaboration)

IHEP. Protvino

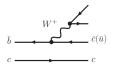
LHC on March

November $16^{\mathsf{th}} - 18^{\mathsf{th}}$ 2011, IHEP, Protvino, Russia

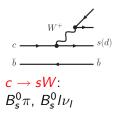

Outline

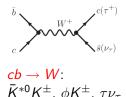
- Introduction
- 2 B_c mass measurement
- 3 B_c cross section measurement
- 4 $B_c^{\pm} \rightarrow J/\psi(3\pi)^{\pm}$ measurements
- Nearest future and conclusions

B_c mass and states


 B_c: unique state in SM formed by two heavy quarks of different flavors

- B_c spectrum potential models
- \bullet B_c mass
- Potential models: 6.2-6.4 GeV/c²
 CERN-2005-005 and refs. therein
- pQCD: 6326⁺²⁹₋₉ MeV/c²
 N.Brambilla & A.Vairo PRD 62, 094019 (2000)
- pQCD: Lattice QCD: 6278(6) MeV/c²
 TWQCD, arXiv:0704.3495
- PDG: $6277 \pm 6 \text{ MeV/c}^2$




B_c decays

- Excited states (below BD threshold) strong or EM decays
- Ground state only weak decays:

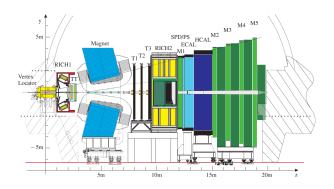
 $b \rightarrow cW$: $J/\psi \pi$, $J/\psi 3pi$, $J/\psi l\nu_l$

- B_c life-time:
 - au $au(B_c) = 0.48 \pm 0.05 \; ext{ps} ext{V.V.Kiselev et al}, \; ext{NP B585, 353 (2000)}$
 - PDG: 0.45 ± 0.04 ps

B_c production

- Very low production rate at e^+e^- , γe^- and ep colliders
- Produced via gluon fusion at hadron colliders
- B_c is produced via its excited states

- Total production rate at LHC ($\sqrt{s} = 14$ TeV) is about 1 μ b.
- Contribution of different states:


1
$$S_0$$
 1 S_1 2 S_0 2 S_1 0.19 0.47 0.05 0.11 [μ b]

• With contribution of P-states as of $\sim 7\%$ of S-states

A.V.Berezhnoj, A.K.Likhoded, M.V.Shevlyagin, Phys.Atom.Nucl. 58, 672 (1994)

I.P.Gouz et al., Phys.Atom.Nucl. 67, 1559 (2004)

LHCb Detector

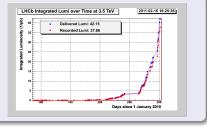
Geometry acceptance

 $1.9 < \eta < 4.9$, unique in forward region

PV precision

 $\sigma_{X,Y} \sim$ 10 μ m, $\sigma_{Z} \sim$ 60 μ m

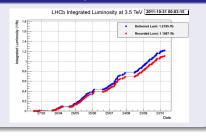
Tracking


 $\Delta p/p$: 0.35%-0.55%

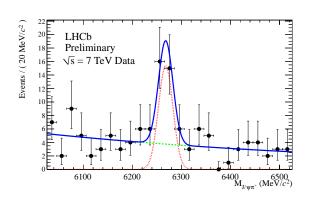
Muon system

truelD $(\mu
ightarrow \mu) \sim 97\%$, misID $(h
ightarrow \mu) \sim 2\%$

LHCb data-taking



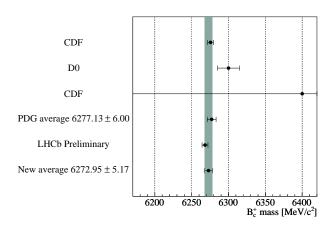
2010 data


 B_c mass measurement B_c production measurement

$2011-1100~{ m pb}^{-1}~{ m recorded}$

• 2011 data

Observation of $B_c \to J/\psi 3\pi$ Other preliminary studies



- Based on $\sim 35 \text{ pb}^{-1}$ data collected in 2010
- \bullet Signal events: 28 \pm 7
- Fit with:
 - Signal: Gaussian
 - Background: Exponential

B_c mass measurement

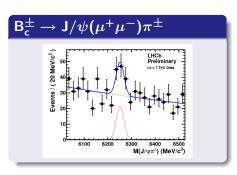
Mass result (preliminary):

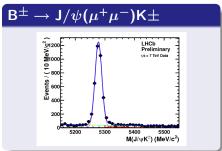
$$M(B_c^+) = 6268.0 \pm 4.0 (stat) \pm 0.6 (syst)~MeV/c^2$$

B_c mass measurement. Systematics.

Source	Value (MeV/c ²)
Mass Fitting:	
Background model	0.32
Signal model	0.07
Momentum calibration:	
Average momentum scale	0.23
η dependence	0.44
Detector description:	
Energy loss corrections	0.11
Alignment:	
Vertex detector	0.06
Total	0.61

Momentum scale calibrated with large $J/\psi \to \mu^+\mu^-$ sample


- ullet Based on $\sim 33 \mathrm{pb}^{-1}$ data sample collected in 2010
- Fully reconstructed $B_c^{\pm} \to J/\psi(\mu^+\mu^-)\pi^{\pm}$
- Use large sample $B^{\pm} \rightarrow J/\psi K^{\pm}$
- Measurement based on


$$\frac{\sigma(\mathcal{B}_c^\pm) \times \mathsf{BR}(\mathcal{B}_c^\pm \to J/\psi \pi^\pm)}{\sigma(\mathcal{B}^\pm) \times \mathsf{BR}(\mathcal{B}^\pm \to J/\psi K^\pm)} = \epsilon_{\mathsf{rel}} \times \frac{\mathcal{N}(\mathcal{B}_c^\pm)}{\mathcal{N}(\mathcal{B}^\pm)}$$

for $P_T(B) > 4$ GeV/c and $2.5 < \eta < 3.4$

B_c cross section

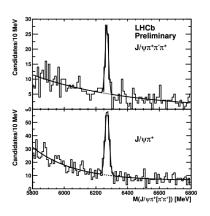
- Life-time unbiased event selection
- Cabbibo suppressed background $B^\pm \to J/\psi \pi^\pm$ for $B^\pm \to J/\psi K^\pm$ taken into account
- Signal events $(B_c^{\pm} \rightarrow J/\psi(\mu^+\mu^-)\pi^{\pm})$: 43 \pm 13
- Normalization events $(B^{\pm} \rightarrow J/\psi(\mu^{+}\mu^{-})K\pm)$: 3476 \pm 62

B_c cross section

- All efficiencies computed from MC
- Efficiencies are binned in (P_T, η)
- Systematics dominated by B_c life-time will be reduced after direct life-time measurements
- Preliminary:

$$\frac{\sigma(B_c^\pm) \times \text{BR}(B_c^\pm \to J/\psi \pi^\pm)}{\sigma(B^\pm) \times \text{BR}(B^\pm \to J/\psi K^\pm)} = (2.2 \pm 0.8_{\text{stat}} \pm 0.2_{\text{syst}})\%$$

• Analysis of 2011 data will come soon with a factor of \sim 25 in statistics


$\mathsf{B}_{\mathsf{c}}^{\pm} o \mathsf{J}/\psi (3\pi)^{\pm}$ CERN-LHCh-CONF-2011-040

- ullet Based on $\sim 300 \mathrm{pb}^{-1}$ data collected in 2011
- Use $B^\pm o J/\psi(2\pi K)^\pm$ as control sample
- Measurement of

$$\frac{\mathsf{BR}(B_c \to J/\psi 3\pi)}{\mathsf{BR}(B_c \to J/\psi \pi)} = \epsilon_{\mathsf{rel}} \frac{N(B_c \to J/\psi 3\pi)}{N(B_c \to J/\psi \pi)}$$

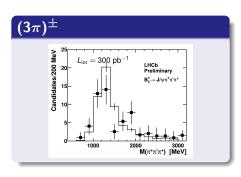
is performed

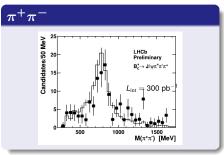
$\mathsf{B}_{\mathsf{c}}^{\pm} \to \mathsf{J}/\psi(3\pi)^{\pm}$

- Number of signal events after fit:

 - $B_c^{\pm} \to J/\psi \pi^{\pm}$ 163 \pm 16 $B_c^{\pm} \to J/\psi (3\pi)^{\pm}$ 58 \pm 10, 6.8 σ

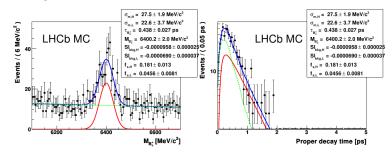
$\mathsf{B}_\mathsf{c}^\pm o \mathsf{J}/\psi(3\pi)^\pm$, Branching ratios


- All efficiencies computed from MC
- Systematic sources:
 - $P_T(B_c)$ spectrum 9%
 - Trigger simulation 4%
 - B_c life-time -3%
 - Background shape 2.2%
- Result (preliminary):


$$rac{\mathsf{BR}(B_c o J/\psi 3\pi)}{\mathsf{BR}(B_c o J/\psi \pi)} = (3.0 \pm 0.6_{\mathsf{stat}} \pm 0.4_{\mathsf{syst}})\%$$

- To be compared with theoretical prediction:
 - \sim 2.3 by A.K.Likhoded, A.V.Luchinsky, (PRD 81, 014015 (2010))

$\mathsf{B}_\mathsf{c}^\pm o \mathsf{J}/\psi (3\pi)^\pm$


- Background-subtracted invariant masses of pion systems: $(3\pi)^{\pm}$ and $\pi^{+}\pi^{-}$
- Consistent with $B_c \to J/\psi a_1^\pm(1260)$ and $a_1^\pm(1260) \to \rho^0 \pi^\pm$ (solid histograms MC)

Nearest future

- \bullet Full statistics of 2011 (\sim **25** scale factor with respect to 2010 data)
- Improved mass measurements
- Life-time measurements
 - Based on MC studies (CERN-LHCb-2008-077)
 - Acceptance extracted from MC, two $P_T(B_c)$ bins are considered (5-12, > 12 GeV/c)
 - Statistical uncertainty below 30 fs can be achieved with 1 fb⁻¹ of data
 - For high P_T bin:

Nearest future

- ullet Life-time measurements based on decay $B_c^\pm o J/\psi(\mu^+\mu^-)\mu^\pm
 u$
 - Advantages
 - ullet Larger branching fraction $\sim 1.9\%$
 - 3μ in the final state: nice signature
 - better possibilities to reduce background
 - It is possible to perform life-time unbiased selections
 - Disadvantages
 - Missing energy carried out by neutrino
 - Very difficult to use MC-free background estimations
 - Strongly depends on MC when missing energy corrections are needed
- \sim **4.7** K reconstructed $B_c^{\pm} \to J/\psi(\mu^+\mu^-)\mu^{\pm}\nu$ events expected from 1 fb⁻¹ of data at $\sqrt{s}=7$ TeV.

Nearest future

Intensive searches for other decays and excited B_c states:

- b- and c-quark decay channels:
 - $B_c^{\pm} \rightarrow J/\psi K^{\pm}$, $B_c^{\pm} \rightarrow \psi(2S)\pi^{\pm}$
 - $B_c^\pm \to B_s^0 \pi^\pm$ • Very clean channel with $B_s^0 \to J/\psi \phi$
 - Need high statistics. Can be done with 2011/2012 data
- Annihilation channel
 - One possibility: $B_c^{\pm} \to K^{*0} K^{\pm}$ with Br $\sim O(10^{-6})$
 - Also requires high statistics
- Excited states
 - $B_c^* \rightarrow B_c \gamma$, $B_c^* \rightarrow B_c 2 \gamma$, $B_c^* \rightarrow B_c 2 \pi$
 - Very soft γ s and pions (100-200 MeV/c in B_c^* rest frame)
 - Can be done for tight-boosted B_c states

Conclusions

- Clear signal in the channel $B_c^\pm o J/\psi(\mu^+\mu^-)\pi^\pm$ was observed
- Mass and cross section measurements were performed with 2010 data collected by LHCb
- First observation of the decay $B_c^{\pm} \to J/\psi(\mu^+\mu^-)(3\pi)^{\pm}$ with the statistical significance **6.8** σ
- Prospects with 2011 data ($\sim 1 \text{ fb}^{-1}$):
 - We expect $\sim 600~B_c^\pm \to J/\psi (\mu^+\mu^-)\pi^\pm$ reconstructed events. Mass and production measurements will be improved. Life-time will be measured.
 - $\sim 200~B_c^\pm \to J/\psi(\mu^+\mu^-)(3\pi)^\pm$ signal events are expected. Will be combined with $B_c^\pm \to J/\psi(\mu^+\mu^-)\pi^\pm$ to improve mass, production and life-time measurements.
 - $B_c^{\pm} \to J/\psi(\mu^+\mu^-)\mu^{\pm}\nu$ will provide an order of magnitude higher yield. Can be used for life-time measurements
 - Other decay channels
 - Excited states

Conclusions

LHCb can do a lot of things about B_c

Any suggestions about important items are warmly welcomed

Thanks a lot