Search for a heavy neutrino and right-handed W of the left-right symmetric model in pp collisions with the CMS detector (EXO-11-002)

> M. Kirsanov INR RAS On behalf of the CMS colaboration

LHC on the march November 2011 Protvino, Russia

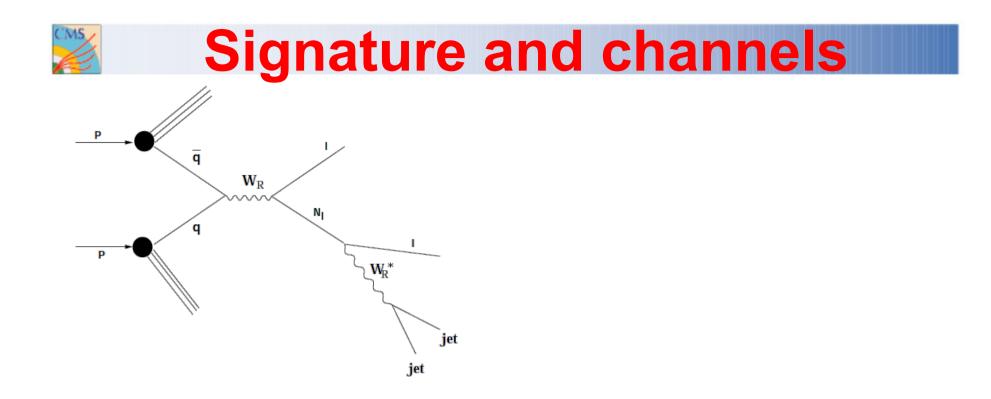
LRSM: What and Why

	Standard Model	Left-Right-Symmetric Extension
Gauge group	SU(2) _L X U(1) _Y	SU(2) _L X SU(2)_R X U(1) _{B-L}
Fermions	LH doublets: $Q_L = (u^i, d^i)_L$; $L_L = (l^i, v^i)_L$ RH singlets: $Q_R = u^i_R$, d^+_R ; $L_R = l^i_R$	LH doublets: $Q_L = (u^i, d^i)_{L_i} L_L = (l^i, v^i)_L$ RH doublets: $Q_R = (u^i, d^i)_{R_i} L_R = (l^i, N^i)_R$
Neutrinos	v_R^i do not exist	N_{R}^{i} are heavy partners to the v_{L}^{i}
	v_{L}^{i} are massless & pure chiral	N_{R}^{i} Majorana in the Minimal LRSM
Gauge bosons	W [±] _L , Ζ ⁰ , γ	W [±] _L , <mark>W[±]_R</mark> Ζ ⁰ , Ζ΄ , γ

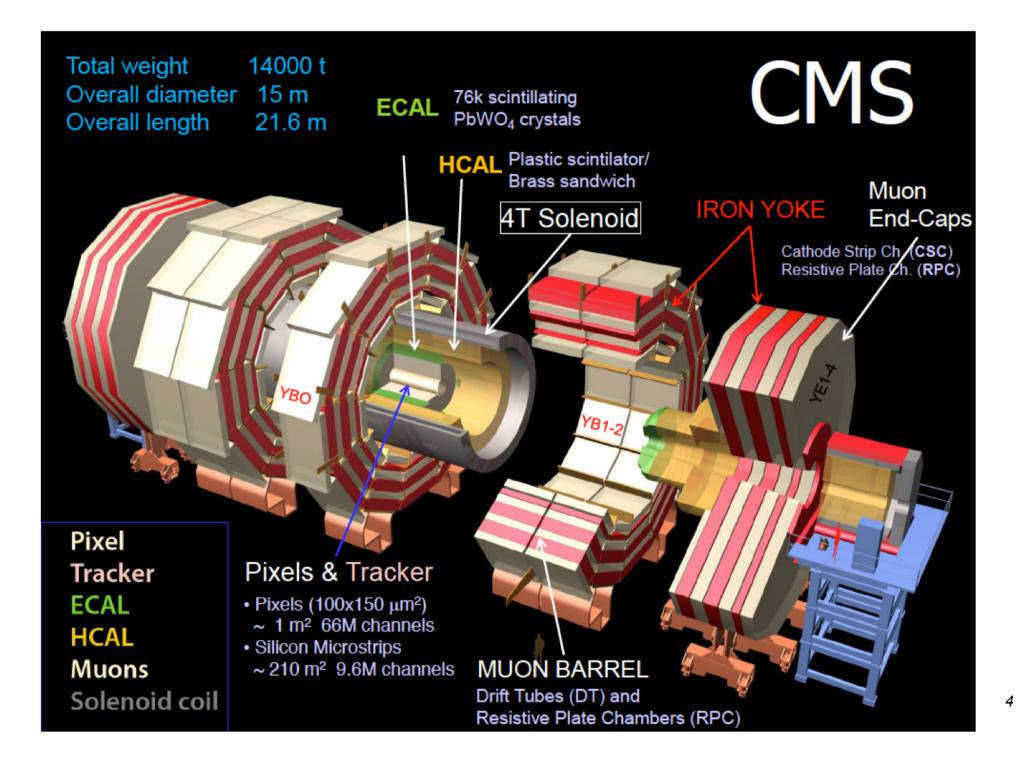
2

Parity Violation, in SM is not explained

LRSM explains by symmetry breaking at an intermediate mass scale


<u>Neutrino Oscillations \Rightarrow Mass, turns out to be very small</u>

LRSM deploys a "see-saw mechanism" to explain smallness of mass


$$\nu_{heavy} \nu_{light} \sim | < H > |$$

LRSM: 6 new particles: W_{R}^{\pm} , Z', N_l (3 heavy neutrinos)

- Main production diagram: s-channel from 2 quarks
- No L-R mixing means $N_l \rightarrow off$ -shell $W_R + l \rightarrow jjl$
- Two-dimensional resonant structure
- Cross sections depend on $M(W_{R})$ and M(N), ~ 1 pb at 1 TeV
- Final signature is 2 leptons + 2 jets, $l = e \text{ or } \mu$

- 3.8T solenoid
- Silicon tracker:

 $\sigma(p_T)/p_T = 15\%$ at 1 TeV

- EMcal: homogeneous Pb-Tungstate crystal $\sigma_{E}/E = 3\%/sqrt(E[GeV]) + 0.5\%$
- HADcal: Brass-scint, $7\lambda_0$ $\sigma_E/E=100\%/sqrt(e[GeV]) + 5\%$
- Muon spectrometer (Resistive Plate Counters, Drift Tubes, Cathode Strip Chambers) in magnet return yoke

MC signal simulation

- >100 mass points studied (up to M(W_R)=1.8TeV), 10k events per point
- Only one neutrino flavor assumed reachable
- M(W_R) dependent k-factor ~1.30 is used (1.26 < k < 1.33 in the search region). Calculated with the FEWZ program

Physical objects

- Electrons p_T cut 30 GeV. Selection optimized for high p_T. Isolation in tracker and calorimeters required (p_T dependent cuts)
- Muons p_T cut 30 GeV. Isolation in tracker required (relative cut)
- Jets anti-kt algorithm R=0.5, p_T cut 40 GeV

Event selection

Preliminary Selection:

At least 1 lepton and 1 jet

Primary Selection:

At least 2 leptons At least 2 jets $p_t > 40$ GeV (two hardest used)

Final Selection:

Electron channel: one electron in the barrel One lepton $p_T > 60$ GeV

Finally we apply a cut on M_{ll} (mainly against Z+jets) and analyse M_{lljj} distribution

Primary selection efficiency

- Changes from ~ 0.8 for $M_N > 0.5M_W$ to zero for $M_N < 0.05M_W$ (N decay products too close to each other)
- Low efficiency for small M_N defines the shape of the lower part of the 2D sensitivity region
- Efficiency slightly smaller (by ~10%) for the electron channel

Backgrounds

- Expected from the SM processes with 2 or more real leptons and with jets
- Some contribution from the QCD processes with fake leptons
- Most important backgrounds: <u>tt production</u>, <u>Z+jets</u> <u>Normalized to data, shape partly from MC</u>
- <u>QCD from data</u>
- Other, small backgrounds: W+jets, ZZ, ZW, WW, tW from MC

Ttbar and Z+jets normalization

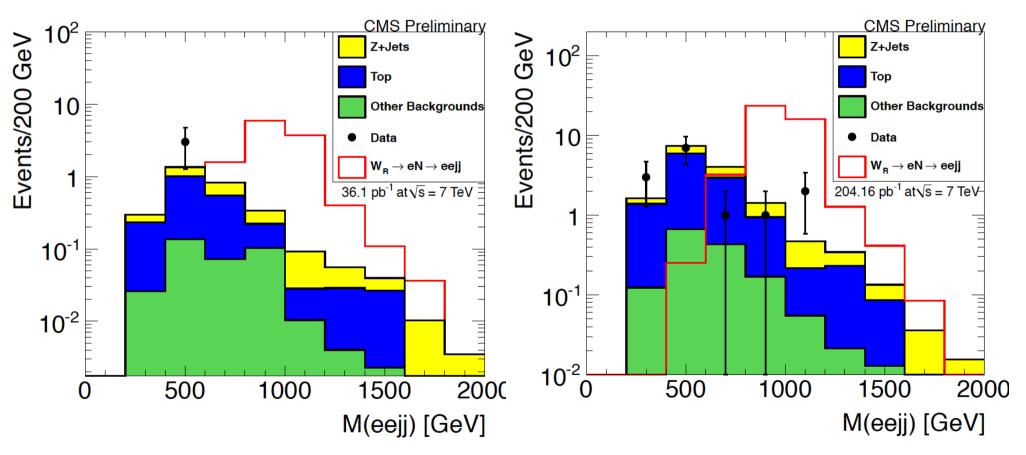
- CMS cross section measurement used for Ttbar CMS PAS TOP-10-005 (2010)
- Ttbar normalization checked using electron muon events - compatible
- NNLO cross section calculation initially used for Z+jets (made with FEWZ)
- Z+jets renormalized using data and MC in the region of the Z mass peak 60 < M(ll) < 120

QCD BG Electron channel

- Select events with an isolated ECAL cluster and a jet, missing $E_{\rm T}$ < 20 GeV
- Probability to reconstruct a cluster as electron is a fake rate
- Contamination from gamma, W subtracted using MC
- Fake rate determined separately in the barrel and endcap
- Fake rate determined separately in case of presence of "close jet" (within R=0.8)
- Select events with 2 clusters and 2 jets and build from them the QCD background sample

Event flow, electron channel

Electron Channel (2011, 204 pb)								
	Data	Signal	$(\epsilon \times A)(\%)$	Tot. BG	tt	Z+jets	Other	
E1	1282	64	51	1126	99	992	34	
E2	490	64	51	470	60	395	14	
E3	445	63	50	433	51	372	10	
E4	14	56	45	15	10	3.8	1.5	
E5	8	56	45	9.4 ± 2.0	5.7	2.7	1.0	


Electron Channel	(2011, 204	pb^{-1})
------------------	------------	-------------

Designator	Meaning
E1	Two electrons and two jets with object requirements applied
E2	Transverse energy cut of the first electron increased to $E_T > 60$ GeV
E3	At least one electron must be in the ECAL barrel
E4	$M_{ee} > 200 \mathrm{GeV}$
E5	$M_{eejj} > 520 { m GeV}$

Run2010A+B

Run2011A

Distribution, muon channel

Run2010A+B **Run2011A CMS** Preliminary **CMS** Preliminary Events/80 GeV Events/80 GeV Z+Jets Z+Jets Тор Тор 0 Other backgrounds Other Backgrounds 1 Data Data $W_{P} \rightarrow \mu N \rightarrow \mu \mu j j$ $W_{_{B}} \rightarrow \mu N \rightarrow \mu \mu j j$ 204.16 pb⁻¹ at√s = 7 TeVE 36.1 pb⁻¹ at $\sqrt{s} = 7$ TeV 10⁻¹ 10⁻¹ 10⁻² 10⁻² 500 1000 1500 2000 500 1000 1500 2000 M(µµjj) [GeV] M(μμjj) [GeV]

Systematics

Electron Channel

Systematic						
Uncertainty	Signal	tī	Z+jets	QCD	Other bkgd	All bkgd
Jet Energy Scale	$\pm 2-20\%$	±11%	$\pm 5\%$	-	±12%	±7%
Electron Energy Scale	±1-3%	$\pm 4\%$	±3%	-	±9%	$\pm 4\%$
Electron Reco/ID/Iso	$\pm 10\%$	±10%	±10%	-	$\pm 10\%$	±10%
Normalization	$\pm 6\%$	±12%	±7%	-	±6%	$\pm 8\%$
Simulation Statistics	±1-7%	±5%	$\pm 4\%$	-	±7%	$\pm 5\%$
Theoretical	$\pm 5\%$	±13%	±19%	-	±13%	±14%
QCD estimate	-	-	-	±18%	_	±3%
Total	±12-25%	±24%	±23%	±18%	±25%	±23%

Muon Channel

Systematic						
Uncertainty	Signal	tī	Z+jets	QCD	Other bkgd	All bkgd
Jet Energy Scale	±0.5-20%	$\pm 4\%$	±7%	-	±10%	$\pm 5\%$
Muon Energy Scale	±0-3%	$\pm 5\%$	±3%	-	$\pm 4\%$	$\pm 4\%$
Muon Reco/ID/Iso	±6-10%	±1%	$\pm 0.5\%$	-	$\pm 0.5\%$	±1%
Trigger Efficiency	±0.3%	±0.3%	±0.3%	-	$\pm 0.3\%$	±0.3%
Normalization	±6%	±12%	±8%	-	±6%	$\pm 8\%$
Simulation Statistics	±1-7%	$\pm 4\%$	±3%	-	±9%	±3%
Theoretical	±5%	±13%	±19%	-	±13%	$\pm 14\%$
QCD estimate	_	-	-	$\pm 25\%$	_	±0.1%
Total	±10-25%	±19%	±22%	±25%	±22%	±17%

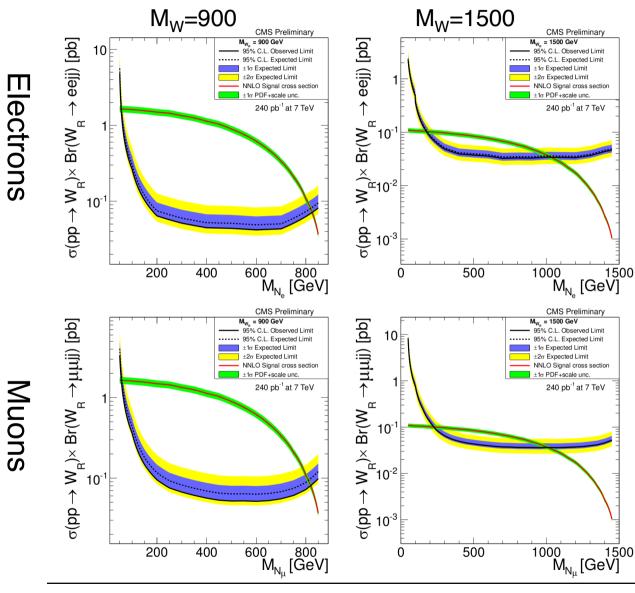
Theoretical

Uncertainty:

- Scale Uncertainty
- PDF

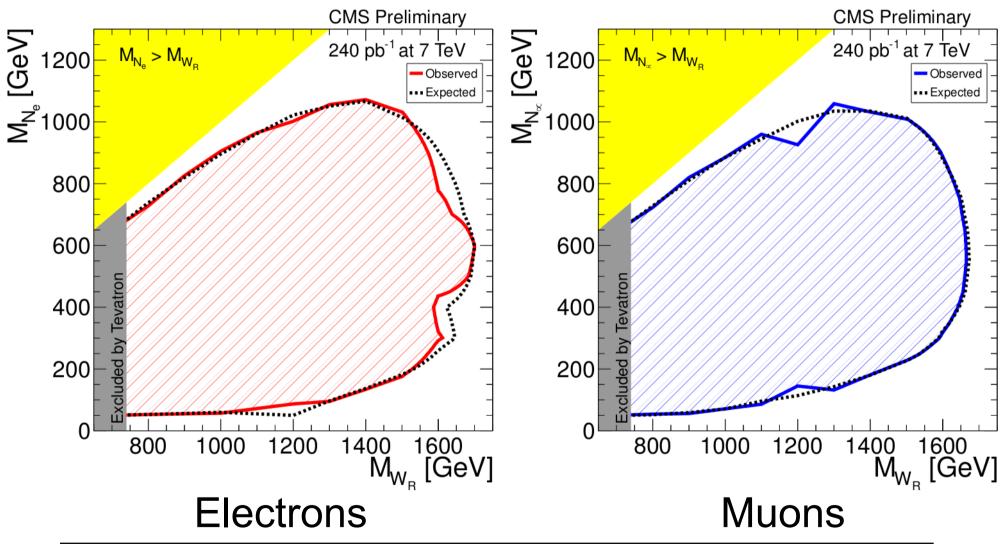
Mikhail Kirsanov (INR Moscow) for CMS LHC on the march Protvino

[•] ISR, FSR



- Multibin limit setting technique based on the RooStats package
- Bayesian limit setting technique
- Systematic uncertainties: Markov Chain MC technique
- Consistent with CL_S technique

Limits



Model Assumptions

- Small mixing angles between L-R
- $g_R = g_L$ due to LR symmetry
- Right-handed CKM matrix is identical to the left-handed
- $M_N > M_W$ allowed, but suppressed

2D Limits

Summary

- 240/pb of data analysed
- The search in two channels is performed: electron and muon
- Data are consistent with the BG expectations
- Regions in the two-dimensional mass plot are excluded up to M(W_R) ~ 1700 GeV