
Top physics in ATLAS Maria Ilaria Besana

(INFN and Univ. Milano) on behalf of the ATLAS Collaboration

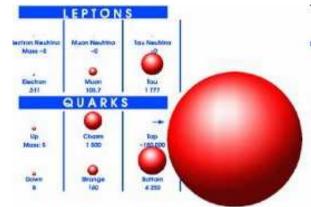
Outline

Introduction

Review of ATLAS measurements on top physics:

- top quark pair cross section
- single top cross section
- main properties:
 - o mass
 - o charge asymmetry
 - o Wtb vertex
 - o spin correlations
 - o charge
 - o flavour changing neutral currents (FCNC)
- searches for resonances in top-antitop events
- Conclusions

Why top quark physics

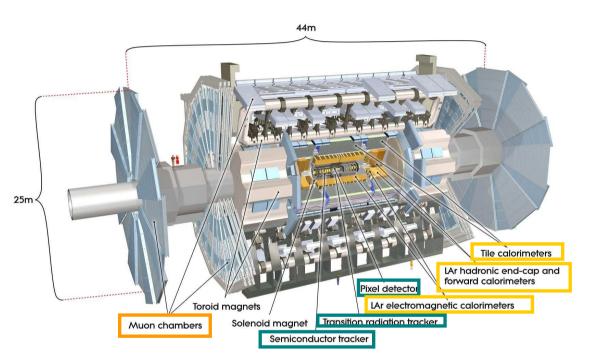

- Top quark is very different from the other 5 quarks
 - short lifetime: <u>it decays before hadronizing</u>
 - possibility to study the properties of a BARE QUARK
 - high mass
- > Main goals of top physics:

test of Standard Model predictions:

- o precision measurements on cross section, mass, couplings
- o searches for deviations as hint of new physics

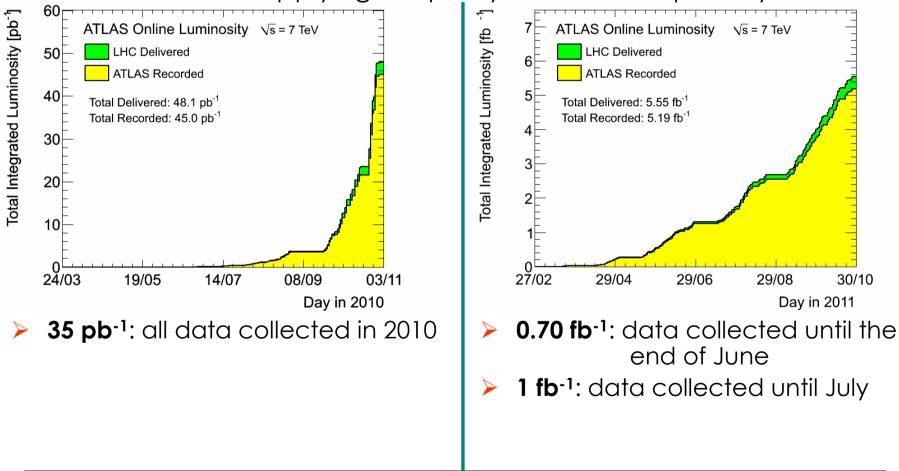
search for new physics:

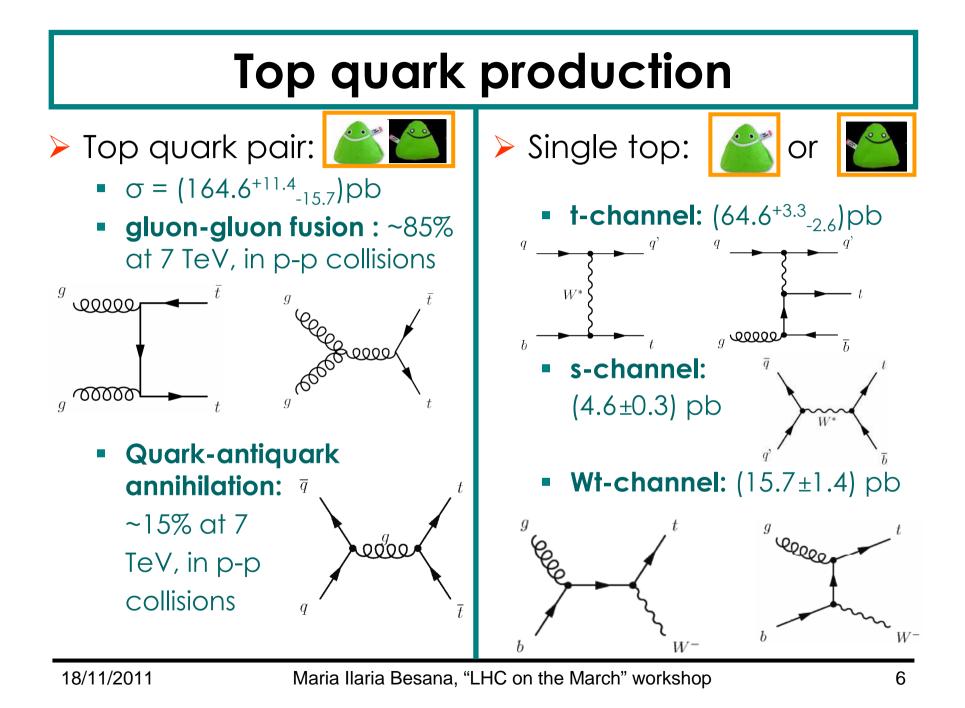
- new non-Standard Model particles, decaying into top quark pairs (resonances)
- detector calibration:
 - o top quark decay involves all possible products: electrons, muons, jets, b-jets and neutrinos



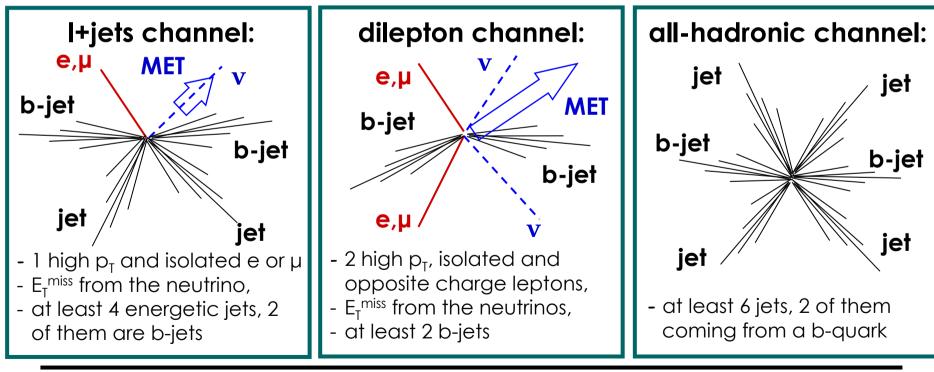
The ATLAS detector

Inner detector:


tracking for charged particles, primary and secondary vertex reconstruction


- Calorimeter system: measurement of electron and jet energy, fundamental for E_T^{miss} reconstruction
- Muon chambers: muon identification and reconstruction

2010 and 2011 data


Analyses based on data collected by the ATLAS detector in 2010 and 2011 after applying all quality criteria for top analysis

Top quark signatures

- Top quarks decay almost 100% of the times in W-boson and b-quark
- The W boson decays:
 - into lepton+ neutrino (33%)
 - into di-jets (67%)
- Top quark pair decay modes:

Top quark event selections

Object definition (unless otherwise noted)

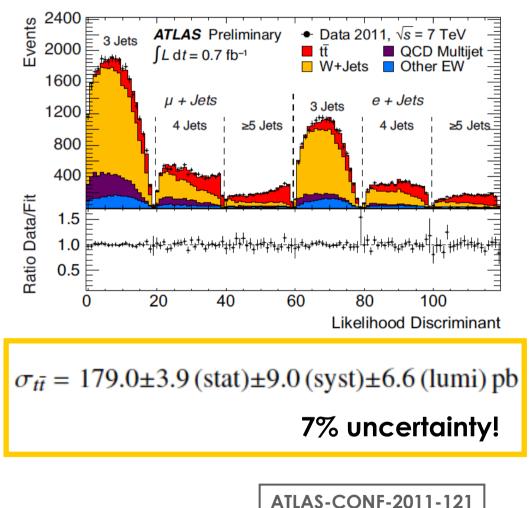
- Electrons: $|\eta| < 2.5$ (excluding calorimeter transition region), $p_T > 25$ GeV (20 GeV in 2010), isolated
- > Muons: combined (ID+MS) muons, $p_T > 20$ GeV, $|\eta| < 2.5$, isolated
- > Jets: reconstructed with antiKT $\Delta R=0.4$, $|\eta| < 2.5$, p_T (hadronic scale)> 25 GeV
- b-jets: 2 algorithms used with 50% (70%) b-eff and 270 (100) light jet rejection
- E_T^{miss}: reconstructed objects included at the appropriate scale More details in performance talks: A. Favareto, E. Dawe and V. Gallo

Event selection

- Non-collision background rejection
 - at least one primary vertex, no energy deposits in the calorimeter not associated to collisions
- Lepton+jets
 - presence of only one lepton, cuts on E_T^{miss} and M_T(lepton, E_T^{miss}) variables, ask at least 4 jets + request a tagged jet (tag analysis)

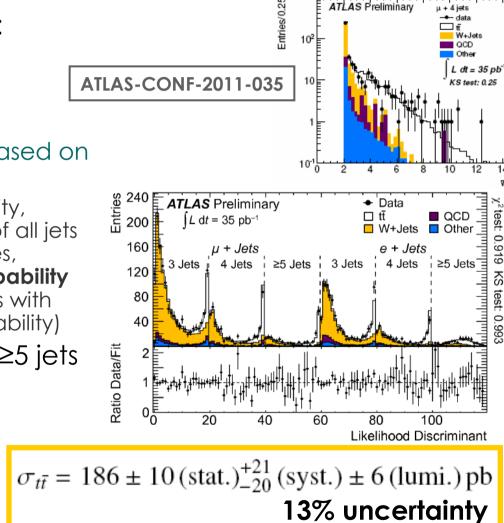
Dilepton

presence of two opposite charge leptons and at least 2 jets, veto on the Z mass window and cuts on E_T^{miss} for ee and µµ ch. and cut on H_T variable for eµ ch. + request a tagged jet (tag analysis)


Top quark pair production cross section measurements

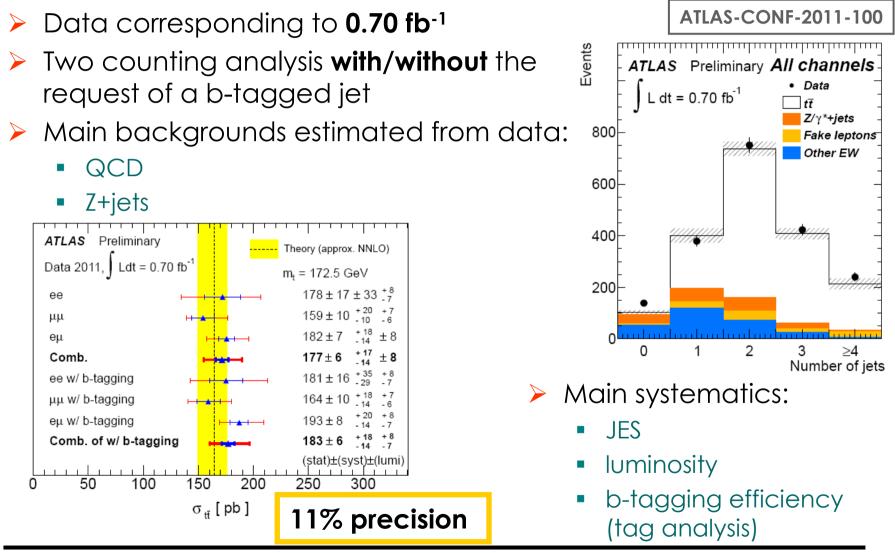
In the following:

- > Inclusive cross section in different channels:
 - I+jets channel with/without using b-tagging
 - dilepton
 - μ + τ
 - all hadronic
- Jet multiplicity in tt+ jets events
- tī+photon


Inclusive cross section: I+jets pre-tag

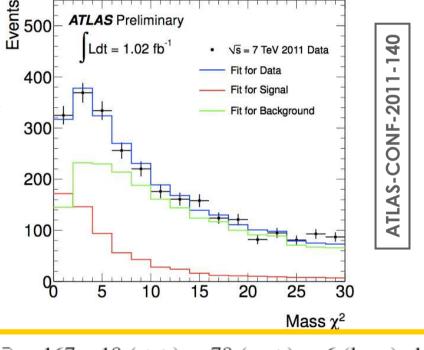
- Analysis with 0.70 fb⁻¹.
- No b-tagging request applied
- Make use of kinematical differences between tī and W+jets:
 - likelihood discriminant based on 4 variables
 - lepton η, leading jet p_T, event aplanarity and transverse momentum of all jets but the two leading ones
- Fit in 6 channels: 3, 4 and \geq 5 jets in e and μ ch.
- > Main systematics:
 - signal modelling (choice of signal MC generator, ISR/FSR) and jet energy scale (JES)

Inclusive cross section: I+jets tag


- Analysis based on 35 pb⁻¹:
- Multivariate technique to separate signal from background
 - likelihood discriminant based on 4 variables
 - o lepton n, event aplanarity, transverse momentum of all jets but the two leading ones, average **b-tagging probability** (considering the two jets with the lowest light jet probability)
- \succ Fit in 6 channels: 3, 4 and \geq 5 jets in e and µ channel
- > Main systematics:
 - W+jets heavy flavour fraction
 - b-tagging calibration

ATLAS Preliminary

μ+4 jets


Inclusive cross section: dilepton

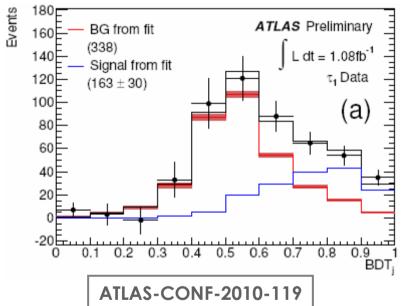
Inclusive cross section: all hadronic

- Analysis based on 1.02 fb⁻¹
- Event selection
 - multi-jet trigger
 - at least 6 jets, 2 b-tagged
 - upper cut on E_T^{miss} significance: $E_T^{miss}/\sqrt{H_T}$
 - H_T = scalar sum of the transverse momentum of all jets in the event.
 - minimal ΔR separation between the two b-jets: ΔR(b,b)> 1.2
- The signal fraction is extracted from a fit on χ² mass distribution using signal+background templates
 - signal: from MC
 - QCD: from data using control samples with exactly 4 or 5 jets

- Main systematics:
 - ISR/FSR modelling
 - JES
 - b-tagging efficiency

 $\sigma(pp \rightarrow t\bar{t}) = 167 \pm 18 \text{ (stat.)} \pm 78 \text{ (syst.)} \pm 6 \text{ (lum.) pb}$ **48% precision**

Inclusive cross section: μ + τ

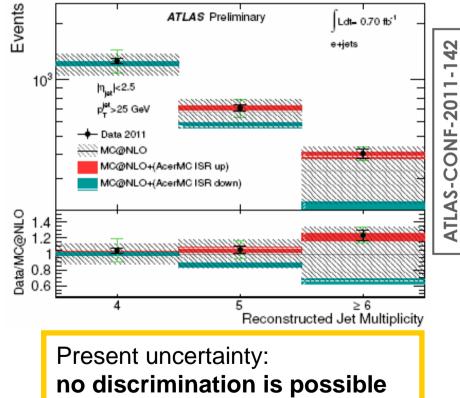

Motivation: decays like t → bH⁺ can enhance BR of final states involving τ-leptons

> Analysis on 1.1 fb⁻¹, with one μ and one hadronically decaying τ

- event selection: 1 μ , 1 τ -jet (with one track τ_1 and with three tracks τ_3) and two other jets, one of them passing b-tagging
- Boosted decision trees (BDT) used to identify τ's and reject electrons and jets

Signal fractions from a fit on BDT_j

- backgrounds templates using control samples in data
- Main systematics:
 - τ-identification,
 - ISR/FSR modelling $\sigma_{t\bar{t}} = 142 \pm 21 \text{ (stat.)} \pm \frac{20}{16} \text{ (syst.)} \pm 5 \text{ (lumi.)} \text{ pb}$
 - b-tagging



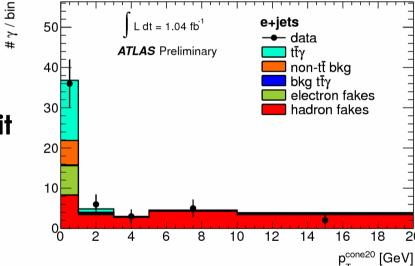
~20% precision

Jet multiplicity in $t\bar{t}$ events

- Motivation: jet multiplicity measurement gives the possibility to constrain ISR at m_{top} energy
- Analysis based on 0.70 fb⁻¹ in l+jets channel
- QCD and W+jets
 backgrounds estimated from data
- Jet multiplicity distribution after background subtraction compared to different MC predictions:
 - ISR varied within the uncertainty

- Main uncertainties:
 - at low jet multiplicity (4 jets):
 QCD and W+jets backgrounds
 - at high jet multiplicity: JES

tt+photon


NEW !!

ATLAS-CONF-2011-153

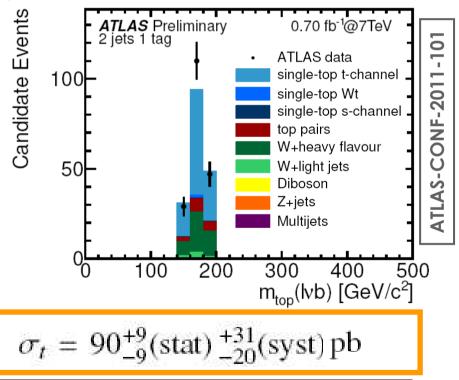
- <u>Motivation:</u> knowledge about the ty vertex
- Analysis performed using **1.04 fb⁻¹** of data in **I+jets** channel
- Standard single lepton selection, + presence of one identified **photon**, $p_T > 15$ GeV and $|\eta| < 2.5$, not close to a jet:

removed the jets within $\Delta R=0.5$ from the photon

- Backgrounds:
 - from control regions in data: $t\bar{t}$ with fakes, W+jets + γ , QCD + γ
 - from MC: diboson, single top, $Z+jets + \gamma/electron fake$
- Signal fraction extracted from a fit on photon tracking isolation:
 - templates for signal and backgrounds from data
- Main systematics: y ID, y purity, JES, b-fagging, ISR/FSR
 - higher statistics will help in reducing y contribution

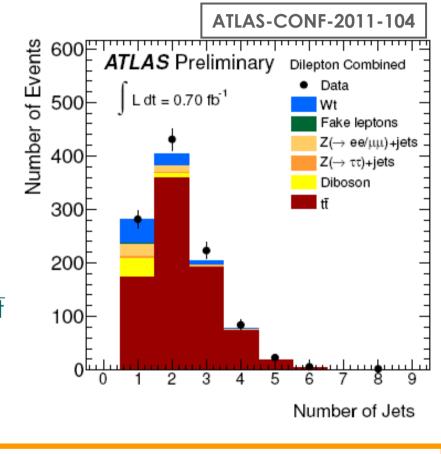
 $\sigma_{t\bar{t}\gamma} = 2.0 \pm 0.5 \text{ (stat.)} \pm 0.7 \text{ (syst.)} \pm 0.08 \text{ (lumi.) pb}$

20


Single top production cross section measurements

In the following different channels:

- t-channel
- > Wt-channel
- s-channel


t-channel

- Analysis performed with 0.70 fb⁻¹, considering only events with W boson decaying into electron/muon
- Signature: 1 energetic lepton, E_T^{miss}, ≥2 jets, 1b-jet
- Cut based analysis in 2-jet and 3-jet bin separately, asking 1 tagged jet and additional cuts on:
 - M_T(I, E_T^{miss}), leading light jet η, event H_T, m(b-jet, I, ν), ΔR(b-jet, light-jet)
- Main backgrounds
 - W+jets: shape from Monte Carlo, normalization from data
 - QCD: data driven both shapes and normalization
 - tī: from Monte Carlo
- Main systematics from ISR/FSR modelling and b-tagging

Wt-channel

- > Analysis performed with **0.70 fb**⁻¹
- Selected events with both Ws decaying leptonically
- Event selection
 - two opposite charge leptons
 - veto on Z boson mass region
 - cut on $\Delta \Phi$ (lepton, E_T^{miss})
 - presence of exactly one jet
- Main backgrounds estimated using control samples in data:
 - fake leptons, Z(ee, μμ, ττ)+jets, t̄t
- Main uncertainties from:
 - available statistics
 - jet energy scale, jet energy resolution (JER) and jet reconstruction efficiency (JRE)
 - tt contamination

$$\sigma(pp \rightarrow Wt + X) = 14.4^{+5.3}_{-5.1}(\text{stat})^{+9.7}_{-9.4}(\text{syst}) \text{ pb}$$

s-channel

- Analysis performed with 0.70 fb⁻¹
- > Challenging measurement:

 $\sigma_t / \sigma_{t\bar{t}} \approx 0.03$ and $\sigma_t / \sigma_{W+2\,jets} \approx 10^{-3}$

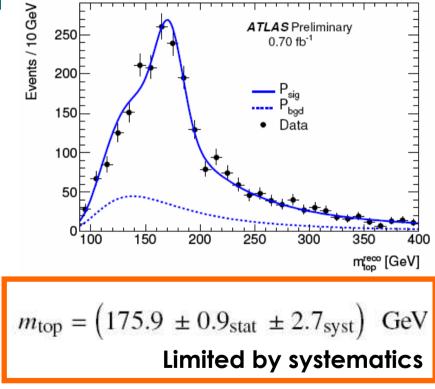
- > Main **backgrounds**:
 - QCD: from fitting method
 - W+jets: MC predictions rescaled to match measurements in control samples
- To enhance signal contribution, additional cuts on:
 - number of tagged jets
 - ΔR between the two leading jets and ΔR (leading jet-lepton)
 - W boson transverse mass M_T
 - m(b-jet, lepton, neutrino)
 - p_T of the two leading jets

- Main uncertainties:
 - statistical uncertainty, signal modelling, JES, JER and JRE ATLAS-CONF-2011-118

	Final Selection
s-channel	16 ± 6
t-channel	33 ± 13
Wt	5 ± 3
tī	111 ± 47
W+jets	4 ± 5
Wc+jets	10 ± 8
$Wc\bar{c}$ +jets	14 ± 12
$Wb\bar{b}$ +jets	70 ± 51
Z+jets	1 ± 1
Diboson	4 ± 1
Multijets	17 ± 10
TOTAL Exp	285 + 17
S/ \sqrt{B}	0.98
DATA	296

 σ_t (s-channel) < 26.5 pb

Top quark properties


In the following:

- > Top quark mass
- Charge asymmetry
- > Wtb vertex
- Spin correlations
- > Top quark charge
- ➢ FCNC

Top quark mass

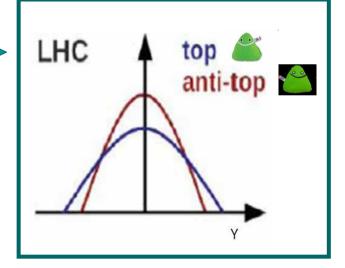
- Motivation: large contribution to electroweak radiative corrections from m_{top}
 - constrain Higgs boson mass from precision measurements
- Analysis performed with 0.70 fb⁻¹ in l+jets channel,
 - asking the presence of one b-jet
- 3-jet from hadronic top: combination with higher total p_T
- Technique: m_{top} and JES determined simultaneously
 - W mass and width used as constraints
- m_{top}^{reco} in data have been compared to signal + backgrounds templates with ≠ JES and m_{top}
 - m_{top} and JES from a likelihood fit

- Main systematics:
 - signal modelling
 - JES for light jets and b-jets

ATLAS-CONF-2011-120

Charge asymmetry I

- Charge asymmetry only in asymmetric initial states
 - main contribution: quark-antiquark annihilation

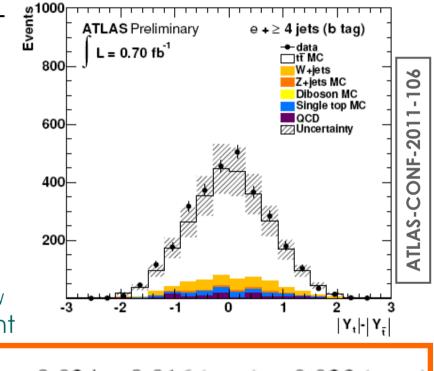


Valence quarks more boosted than sea antiquarks

- top more boosted than antitops
- broader rapidity

Sensible observables to the asymmetry:

$$A_{c} = \frac{N(\Delta \mid Y \mid > 0) - N(\Delta \mid Y \mid < 0)}{N(\Delta \mid Y \mid > 0) + N(\Delta \mid Y \mid < 0)}$$

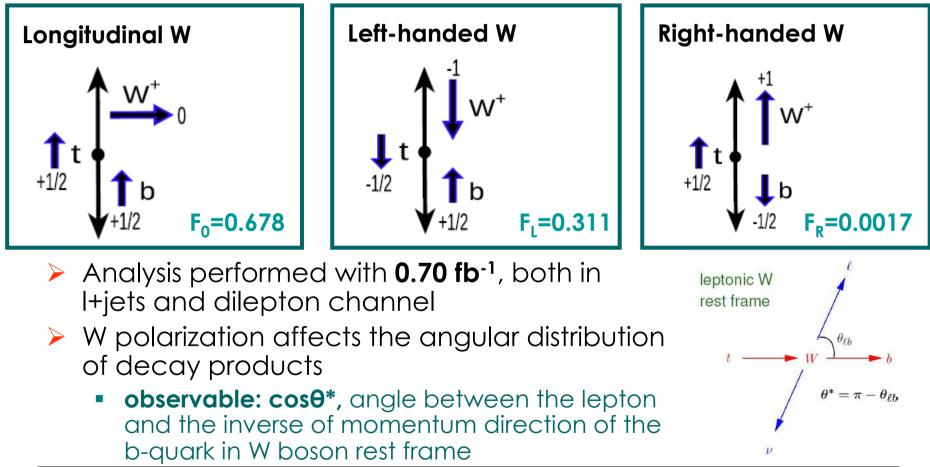


where $\Delta |Y| = |Y_t| - |Y_{\overline{t}}|$

In SM asymmetry only at NLO: A~1%

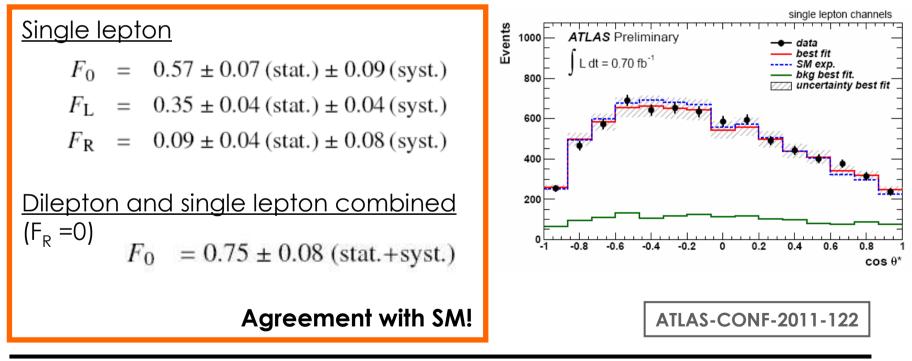
Charge asymmetry II

- Analysis performed with 0.70 fb⁻¹ in Main systematics:
 I+jets channel
 signal modelling and JER
- Standard I+jets selection, using btagging
- W+jets and QCD backgrounds from data, other backgrounds from MC
- Event kinematics reconstructed with a kinematic likelihood fitter
 - input: p₁, η, Φ of decay products
 - constraints from m_t , m_w , Γ_t and Γ_w
 - b-tagging info taken into account
- Bayesian unfolding used to correct for acceptance and detector effects

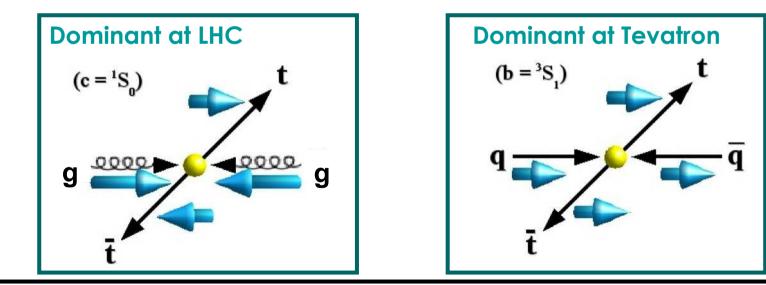


 $A_{\rm C} = -0.024 \pm 0.016 \,(\text{stat.}) \pm 0.023 \,(\text{syst.})$

in agreement with SM predictions

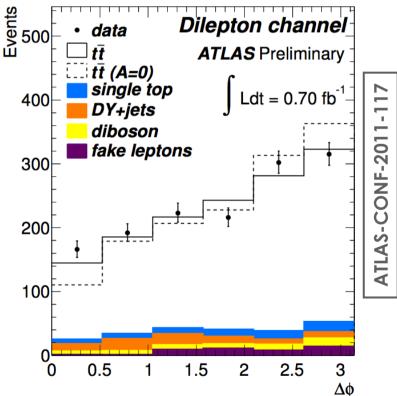

Wtb vertex I

- Motivation: check V-A structure of Wtb vertex
- \succ SM prediction:


Wtb vertex II

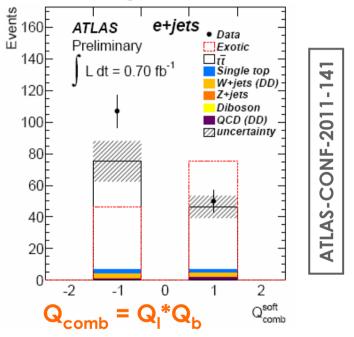
- The differential decay rate is fitted with signal+backgrounds templates:
 - QCD from data, signal and other backgrounds from MC
- Helicity fractions extracted from the fit
- Main systematics: signal modelling and b-jet identification

Spin correlations I


- Motivation: test of SM predictions, BSM scenario predicts different correlations
 - complementary to Tevatron measurements: ≠ energy and ≠ dominant production mechanism
- > Top and antitop decay before hadronizing:
 - polarization is not lost
 - spin correlation from angular distributions of decay products
- SM prediction compared with non correlation hypothesis

Spin correlations II

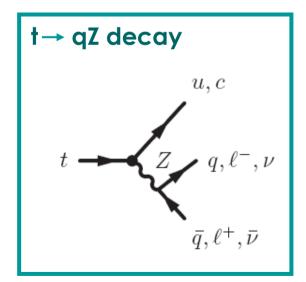
- Analysis in dilepton ch. using 0.70 fb⁻¹
- Observable: ΔΦ(I⁺,I⁻) in the lab frame
 - no need to reconstruct event kinematics
- Dilepton selection (sl. 8), no btagging
- Main backgrounds (DY+jets and fake leptons) using DD methods
- ΔΦ(I⁺,I⁻) distribution in data is fitted with SM and nocorrelation predictions
- > SM contribution: $f^{SM} = 1.06 \pm 0.21$
 - combining all channels


- Main systematics:
 - MC available statistics
 - signal modelling (MC generator and ISR/FSR)

Top quark charge

- Motivation: exclude an exotic top quark with a charge -4/3
- Analysis with 0.70 fb⁻¹, I+jets ch.
- Crucial points for the analysis:
 - pair W-boson and b-jet in the correct way
 - measure W boson and b-jet charge
 - W boson charge from the lepton
- Two techniques:
 - W-b pairing from m(lepton,b-jets),
 b-jet charge = sum of associated tracks charges
 - W-b pairing using a kinematic fitter, select events with a soft µ inside the b-jet of the leptonic leg: Q b=Qµ

Main systematics: ISR/FSR modelling

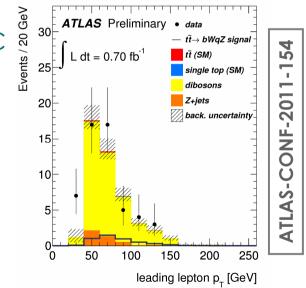


Agreement with SM: **exotic top excluded with >5σ** with both techniques combining electron and muon channels

FCNC I

Motivation:

- in SM top quark FCNC are absent at tree-level and are highly suppressed by the GIM mechanism; present only through loop corrections
- several BSM physics models predict higher branching ratios for FCNC top quark decays
- Possible channels for top quark FCNC are:
 - †→Zq
 - t→gq
 - † → γq
- > ATLAS searches:
 - t→qZ decay (see next slide)
 - $qg \rightarrow t$ production:
 - o analysis performed selecting single top events, with 2010 data
 - $o \sigma_{gq}$ x BR(t→bW) < 17.3 pb



FCNC II

- ➤ tī events, with one top decaying according to SM and the other through FCNC: tī → WbZq
- Considered only events with: W(Iv) and Z(I⁺I⁻)
 - <u>SIGNATURE</u>: 3 isolated leptons, two of them with same flavour and opposite charge and invariant mass equal to M_Z, 2 jets and E_T^{miss}
- Main backgrounds:
 - WW, ZW with 3 real isolated leptons: from MC
 - Z+jets, tt (l+jets, dilepton), single top, W+jets and QCD with 1, 2 or 3 fake leptons: DD techniques
- Main systematics: WW, ZW modelling

No signal evidence: $BR(t \rightarrow qZ) < 1.1\%$

NEW !!

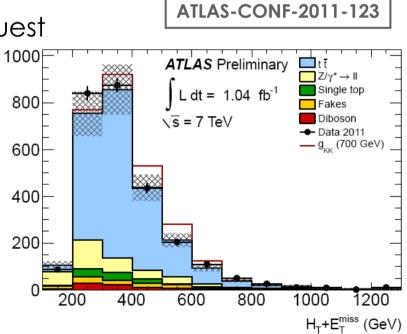
Search for new physics in t events

In the following:

Resonances in tī events

- lepton+jets and dilepton channels
- > Search for new particles in top events

Resonances


Motivation: the existence of new resonances that decay predominantly in top quark pair predicted by some BSM models

Events

- > Analysis performed in **dilepton** ch. with **1.04 fb**⁻¹ of data
- \succ <u>Goal</u>: search for excess in the H_T+E_T^{miss} spectrum
- Signal: KK-gluon in Randall-Sundrum model
- Event selection: no b-tagging request
- Backgrounds:
 - DY+jets and fakes from data
 - SM tt, t, dibosons from MC
- Data are compatible with SM background only hypothesis:

m_{KK} > 0.84 TeV at 95% CL

- Main systamatics:
 - JES and tt modelling

Other new physics searches

- Search for resonances in m(top-antitop) spectrum performed in I+jets ch. with 200 pb⁻¹: limits for a Z' boson:
 - 95% C.L. limits on σxBR(Z'→tt̄): 38 at m_{z'}=500 GeV and 3.2 at m_{z'}=1300 GeV
- Other new physics searches involving top quark reported in Nenad Vranjes talk:
 - $t\bar{t} + E_T^{miss}$ searches:
 - o data are found to be consistent with SM expectations. Limits at 95% CL put on new particles masses and cross sections
 - same sign top search:
 - no observation of same sign tops, upper limits on flavourchanging Z' boson cross-section

Conclusions

Conclusions

- > All results are consistent with SM expectation
- > Very competitive measurements:
 - top quark pair cross section measured in different channels, using 2011 data
 - o up to 7% precision reached
 - measurement of jet multiplicity to constrain ISR
 VERY RECENT RESULT, presented at TOP2011 conference
 - NEW result: top-antitop + photon cross section
 - single top cross section measured for different production mechanisms
 - measurements of the main top properties:
 - O <u>NEW result</u>: UPDATE on FCNC measurement
 - searches for new physics in top events: constraints on the mass of new particles
- Most of them already limited by systematics
 - work ongoing to decrease the various contributions
- Still a lot of 2011 data to be analyzed

