Conceptual design for horizontal insertion of FLArE TPC modules

L. Bartoszek BARTOSZEK ENGINEERING 4/22/24

Overview

- There isn't enough room in the current tunnel for a vertical insertion of FLArE TPC modules
- Horizontal insertion of TPC modules has been done before—EXO
 - EXO was a vacuum insulated cryostat with two copper vessels made from ultra radiopure copper
 - The inner cryostat (surrounding the LXe TPC,) was full of HFE, a heat transfer hydrocarbon liquid
 - I designed a custom machine supported from the room crane rails in the clean room at WIPP to do the insertion
- EXO is also where I got the idea to use Jetseals to seal the TPC modules against the vessel
- The insulation scheme is similar to MicroBooNE

From a talk I gave at EXO Week in 2009:

The TPC was supported by a custom horizontal insertion mechanism

The cold door mated against the inner cryostat

The TPC and the cold door supported from the installation machine

The installation machine holding the outer warm door

Two views of the HV feedthrough through the cold door

The fully insulated detector in the tunnel at CERN

Removing the front face foam to expose the cold doors of the detector

End view showing ample room for a TPC module insertion machine

First piece of foam removed exposing the feedthroughs

Front face foam removed in preparation for module extraction

A TPC module withdrawn horizontally from the cryostat

Section view showing the space inside the foam enclosure for services

Top foam and plates made transparent

Plan view through the transparent top of the cryostat

A TPC Module with three TPC cells hanging from cantilevered beams

This is a 20kV feedthrough mounted on an NW40 flange from Lesker, with an aluminum EVAC seal. It is a placeholder since it is not a cryo HV feedthrough.

These are 6 inch conflat flanges with 4" OD tube to get power in and signals out. We'll have to see if this aperture is adequate.

6 inch OD x .250 inch wall stainless tubing is the cantilevered beam that holds the TPCs up. The tubes are welded to flanges bolted to the inside of the cold door.

A TPC Module with 6 foot man next to it for scale

The TPC module weighs 2,400 lbs (1,088.4 kg) as shown.

Another view showing a conceptual HV connection scheme to the cathode planes

Exploded view of a module showing separate TPCs

Overall dimensions of the TPC "filing cabinet" cryostat

This object weighs 43,546 lbs, 21.8 tons. (19,749 kg) Can it be brought down the tunnel shaft in one piece?

Preliminary FEA of vessel and TPC

- I did very basic checks of plate thickness and beam size to verify the feasibility of the design
- Much more sophisticated analyses need to be done yet

Von Mises stress plot, 5 psi internal pressure, 2 inch thick back wall

Maximum stress is on the inside radius of the opening in the cryostat wall. Stresses everywhere else are significantly lower.

Von Mises stress plot, 5 psi internal pressure, 2 inch thick back wall

Deflection plot, 5 psi internal pressure, 2 inch thick back wall

Deflection plot, 5 psi internal pressure, 2 inch thick back wall

The doors deflect by ~3 mm. This analysis is for uniform internal pressure loading. The hydraulic pressure gradient from the LAr is not included here.

Von Mises stress plot of TPC Module with 1 G load vertical

Another view of Von Mises stress with 1 G load

Total displacement plot of TPC module with 1 G loading

The cantilevered supports appear to be adequate for 1 G loading of the TPC modules.

Z deflection plot of TPC Module with 1 G loading

Y (vertical) deflection plot of TPC module with 1 G loading

Vertical sag from gravity at the end of the cantilevers is 3 mm.

Seal concept for the large rectangular cold doors

From <u>https://jetseal.com/</u>. We used Jetseals in EXO for the cold door on the cryostat.

I am currently working with Jetseal to make sure they can make seals as large as ours.

Summary

- What is presented here is a conceptual design to see if the horizontal support of the TPCs, horizontal insertion and extraction are feasible
- The concept of horizontal assembly was used in EXO
- The single wall, foam insulated cryostat is similar in concept to MicroBooNE
- Much work needs to go into insulation and sealing the insulation from moist air to prevent ice build-up and heat leak