Towards the optimization of a Muon Collider Calorimeter

Federico Nardi, S. Abbas, T. Dorigo, J. Donini, J. Kieseler

MODE The collaboration

- IDEA: Use Automatic Differentiation techniques not for the optimization of a Neural Network, but rather for a **complex experimental system** such as a detector
- MODE (Machine-Learning Oriented Design of Experiments) aims at forming a **joint community** of physicists and computer scientists to help and propose alternative methods in experimental R&D
- Possibility for global optimization studies, sensitive also to the interconnection between subsystems

Toward the end-to-end optimization of particle physics instruments with differentiable programming

Tommaso Dorigo ^{a b x} 2 🖾 , Andrea Giammanco ^{a c x}, Pietro Vischia ^{a z c}, Max Aehle ^d, Mateusz Bawaj^e, Alexey Boldyrev^{a f}, Pablo de Castro Manzano^{a b}, Denis Derkach^{a f}, Julien Donini^{ag x}, Auralee Edelen^h, Federica Fanzago^{ab}, Nicolas R. Gauger^d, Christian Glaser^{ai}, Atılım G. Baydin^{a j}, Lukas Heinrich^{a k}, Ralf Keidel^I, Jan Kieseler^{a m}, Claudius Krause^{a n}, <u>Maxime Lagrange</u>^{a c}, <u>Max Lamparth</u>^{a k}, <u>Lukas Layer</u>^{a b o}, <u>Gernot Maier</u>^p, <u>Federico Nardi</u>^{a b q g}, Helge E.S. Pettersen^r, Alberto Ramos^s, Fedor Ratnikov^{a f}, Dieter Röhrich^t, Roberto Ruiz de Austri^s, Pablo Martínez Ruiz del Árbol^{a u}, Oleg Savchenko^{b c}, Nathan Simpson^v, Giles C. Strong^{a b}, <u>Angela Taliercio ^c, Mia Tosi ^{a b q}, Andrey Ustyuzhanin ^{a y}, Haitham Zaraket ^{a w}</u>

^a MODE Collaboration¹

Reviews in Physics 10 (2023) 100085

MODE Activities

... And more! https://mode-collaboration.github.io/#papers

LHCb calorimeter optimization

Array configuration for SWGO telescope

Hybrid calorimetry - how coarse granularity allows us to perform particle ID

Our study at the Muon Collider

- Development of a full differentiable pipeline to propose an optimized ECal design
- Starting from reference Crilin geometry
- Maximise energy and position reconstruction efficiency (and material budget)

Muon Collider Optimization Workflow

- End objective: design optimization study approached with AD techniques
- background discrimination and instrumentation cost

Development of a pipeline to propose an optimal configuration in terms of signal-to-

- Based on 3 main core methods
- Provide information encoded in a utility function
- Minimized using AD • libraries (PyTorch, Tensorflow)

Pipeline A toy model

- Idea: represent calorimeter as a grid. Optimize the spacing (Δx , Δy , Δz) between the points.
- Initialize the **geometry**: 10 layers of 80x80 pixels
- **Simulation**: evaluate a distribution in each grid point
 - 3D gaussian with $\mu_x = \mu_y = \mu_z = 0$, $\sigma_x = \sigma_z \neq \sigma_y$
- **Reconstruction**: infer parameters of the distribution from the grid
 - Use sample mean and standard deviation estimators $\hat{\mu}, \hat{\sigma}$
- Loss: Mean-squared-Error for gaussian parameters + regularizer to prevent collapse towards 0:

•
$$\sum_{i=x,y,z} (\hat{\mu}_i - \mu_i)^2 + (\hat{\sigma}_i - \sigma_i)^2 + \frac{1}{\Delta x_i^2}$$

sigma_x =	= 100.
sigma_y =	= 120.
sigma_z =	= 100.

Pipeline A toy model

- Use Automatic Differentiation to find $(\Delta x, \Delta y, \Delta z)$ that **minimize** the loss
- Using proposed parameters, the grid adapts to the dimension of the gaussian ball
- Asymmetry in sigmas reflected by different spacing values

Final spacing: [0.47563136 0.5433373 0.44885612]

Surrogates BIB generator

- Isolated a single wedge, with 1.5TeV BIB event
- Trained a Neural Network to replicate BIB flux on each wedge
- Possibility for intrawedge interpolation to be able to resolve smaller crystals

Surrogates **Shower generation**

- Generated a set of monochromatic photon events with Geant4
- Fitting images to differentiable functions to describe showers
- Also, training of a DNN in progress

50

50

50

50

Reconstruction

- Reconstruction based on DeepJetCore, a Graph Neural network developed originally for the HGCal of CMS to perform clustering on jets
- Adapted for our single-photon case
- Compared reconstruction resolution with respect to traditional algorithm (Pandora+ParticleFlow)

Reconstruction Signal photons

φ=0.38rad

Overlay of 1.5 TeV BIB and single-photon events generated with Geant4

φ=0.75rad

φ=-1.91rad

Summary

- Developed and tested surrogates
- Developed basic pipeline
- Final results TBA!

Need to finish implementation of all elements and run full simulation

Backup

Muon Collider OC: Energy reconstruction

- Primary energy inferred by summing the energy deposits for signal-labeled hits
- Degrades at lower energies, where signal and **BIB deposits become comparable**
- To evaluate resolution, fit to a CrystalBall function. Extract gaussian parameters for mean and std.

$$f(x;lpha,n,ar{x},\sigma) = N \cdot egin{cases} \exp(-rac{(x-ar{x})^2}{2\sigma^2}), & ext{for } rac{x-ar{x}}{\sigma} > \ A \cdot (B - rac{x-ar{x}}{\sigma})^{-n}, & ext{for } rac{x-ar{x}}{\sigma} \leqslant \end{cases}$$

 $-\alpha$

30

