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• Many custom ASICs have a similar structure:

• Design and verification of a custom ASIC is complex and time consuming

• Reuse of generic blocks possible (ADC, voltage regulators, etc.)

• Adaptation of internal logic difficult, custom to original application

• Internal data processing logic replaced by with RISC-V processing system

– Adaptation to new application / Bugfixes via firmware updates

• Hybrid detector with RISC-V-based microprocessor SoC 
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• 2mm x 2mm in 65nm Technology

• RV32-IMC Core

– 3 stage pipeline

– Multiplication extensions

– 50 MHz @ 1.2V

– Fully triplicated Core

• TMR Strategy in RISC-V Core:

– Triplication of

• All sequential elements

• All combinational logic

– Majority voters after each sequential Element

– Additional feedback path

– Three separate clock-trees

• TMR SRAM Strategy:

– 3 Dual-Port SRAM Instances

– Scrubbing on second SRAM port

– 3x 32Kbyte
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STRV-R1 – Architecture
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• Heavy-Ion irradiation results

– Effective SEU cross-section is larger than in test-structures for sequential elements

– TMR protection scheme in RISC-V core achieves up to 8000x improvement

• SEFI cross-section directly compared to the SEU cross-section

• Residual functional error rate remains

• Observed types of SEFIs during Irradiation:

– Silent Data Corruption (SDC)

– Timing Deviation

– Timeout (Reset or reprogramming required)

• SEFIs which can not be recovered by a reset of the RISC-V core:

– Data or Instructions in the SRAM corrupted

– Reprogramming of the SRAM required

• Reprogramming rate:

– For low LET (<16 MeV.cm²/mg): Reprogramming required in 30% of SEFIs

– For higher LET (>16 MeV.cm²/mg): Reprogramming required  for >50% of SEFIs
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Heavy-Ion Irradiation



• Analysis of SRAM as SEFI error source

– SRAM isolated analyzed under irradiation

– RISC-V core deactivated 

• Reduction of non-correctable SEUs in SRAM through:

– Triplication of the SRAM

– Scrubbing of the SRAM

• Residual error rate remains

– Same order of magnitude as the system's SEFI rate

• Error pattern can be reproduced in SEE injection simulation

– Occurrence of SEUs between two clock cycles

– Incorrect scrubber correction can occur 

• 17% of all permanent SEUs in SRAM lead to trap of the RISC-V core

– E.g. invalid instructions or addresses

– Dhrystone benchmark

– Dependent on distribution of data / instructions

• Remaining permanent SEUs lead to SDCs or are masked by software
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SRAM  Heavy-Ion Irradiation



• Designed to replicate real-world impact of SEE

• Intended for simulations with synthesis or place and route netlists

• Ability to include information about the
physical placement of the cells in the design

• Automatic generation of SystemVerilog assertion

• No modification of design or netlist required

– modification of cell library required

• VPI Functions used to communicate
with simulator
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• Randomization

• Reproducibility and random stability 

– Framework uses PRNG with one-time seed provided by simulator

• Fault intent specification

– Scope to be covered by injection (top level of injection)

– Type of fault to inject (SET / SEU / Macro specific)

• Filtering options

– Nodes to be injected on

– Netlist exclusions (string manipulation)

– Cell type selection (with DEF mapping)
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• Additional to randomized selection from netlist

• Layout Information from DEF

– Positions mapped to faultable node objects

– Distance from faulted node to other nodes calculated

– Interaction probability determines secondary SEEs

– Additional nodes upset
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• SET are less meaningful in RTL

– Synthesis and place & route netlist used

• SEU Injection requires instrumentation of the STD cell library

– Added internal signal for flipping the stored value

• Select (randomized) node and SEE duration

• Read state of selected node via VPI functions from simulator

• Invert state of the net using VPI put value function with force flag

• Create a callback for the SEE duration

• Simulator continues for the given amount of time

• Callback from Simulator when time elapsed

• Release the net using VPI function

• SEE duration in SEUs: Time the upset is actively forced

– Upset is kept until next valid sequential activity
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• Timing of SEE independent of clock (randomized)

• SET in the combinational logic or clock-tree

→ Timing violations in sequential logic possible

– Setup, Hold, Width violations

• Typical standard cell models set sequential output to X (unknown)

• Propagation through netlist according to simulator settings 

• Modified standard cell library to replicate real-world behavior

– Randomized valid output propagated to next cells 

20.06.2024 STRV-R1 (SEU-tolerant-RISC-V) – CMOS Verbund Meeting 2024 | alexander.walsemann@fh-dortmund.de 11

Standard Cell Library Instrumentation
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SET in comb. logic (setup / hold violation), output randomized
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• Timing violation propagation instrumentation:

– Replicate real-world behavior of cell

– Separate probability calculation for

• Setup / Hold

• Width (clock)

– Randomized output

– Modified primitives required

• SEE Injection instrumentation:

– Introduction of Keyword

– Detected by node extraction step of framework

– SEU: Additional signal for inverting the stored value

– Original STD cell primitives may be reused
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Standard Cell Library Instrumentation
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• SRAM macros handled differently than standard cells

– Depending on SRAM Cells used, location information not available

– Interleaving architecture, the bits in a data word are not physically adjacent 

– Multiple-bit upset (MBU) distribution can be used

• Randomized distribution across multiple bits & multiple words

• Typical foundry HDL SRAM models assume worst case 

– Read operations are generally not critical regarding internal state

– Write operation to unknown address invalidates entire memory

• Foundry SRAM models modified to replicate real-world behavior

• Timing violation handling

– Control Signals: Assume random operation

– Address: Assume single randomized address

– Data input: Store randomized word
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SRAM Macro Cell Instrumentation
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• Apart from direct hits, data in sequential elements can be modified by:

• SETs in clock buffers / inverter of the clock tree

– Depending on the level in the clock tree large number of leafs affected

– Additional clock pulses inserted

• Additional clock pulses can be masked by inactive / static data path

– Static data paths common in general purpose circuits such as RISC-V core

• Clock pulse timing width violation in sequential logic

– Sequential element may not store new state 

– Reduced impact compared to SET in clock signals

• Capture of SET in data path

– Masked by combinational logic and application-specific state

– Setup-Hold violations can mask impact of SET

• Simulation constraints for simulating additional contributing SEU sources:

– Dhrystone Benchmark executed by RISC-V core

– SETs equally distributed across clock cycle

– Shown randomized distribution of SET pulse duration used 
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STRV-R1 SEU Contributing Sources



• Single Event Transients captured by endpoint sequential Logic

• Cone of logic as input to sequential Logic

– Dissipation during propagation through design

– Elongation during propagation through design

– Masking via other combinational logic

• Application-specific designs contain a significantly number of masked data paths

– SET capture rate in specific test structure is higher

• Simulation constraints for SETs in data paths:

– Different application software executed

– SETs equally distributed across clock cycle
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SET Capture in sequential logic
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• Heavy-Ion irradiation results

– Effective SEU cross-section is larger than in test-structures for sequential elements

– TMR protection scheme in RISC-V core achieves up to 8000x improvement

– Residual error rate remains, SEFIs present

– Second irradiation, SRAM individually analyzed

• Despite SRAM triplication and SRAM, errors present in data stored in SRAM

• Errors present without RISC-V core activity, cause in SRAM itself, not RISC-V core

• SEE-Injection simulation framework has been developed

– Designed to replicate the real-world impact of SEE

– Intended for simulations using synthesis or place and route netlists

– Ability to incorporate physical placement information

• Simulation of multiple concurrent SEEs
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Summary | Conclusion


