

Characterization of an Radiation Hard RISC-V Microcontroller

CMOS Verbund Meeting – 19. Juni 2024

Fachhochschule Dortmund University of Applied Sciences and Arts

Introduction

• Many custom ASICs have a similar structure:

- Design and verification of a custom ASIC is complex and time consuming
- Reuse of generic blocks possible (ADC, voltage regulators, etc.)
- Adaptation of internal logic difficult, custom to original application
- Internal data processing logic replaced by with RISC-V processing system
 - Adaptation to new application / Bugfixes via firmware updates
- Hybrid detector with RISC-V-based microprocessor SoC

STRV-R1 – Architecture

- 2mm x 2mm in 65nm Technology
- RV32-IMC Core
 - 3 stage pipeline
 - Multiplication extensions
 - 50 MHz @ 1.2V
 - Fully triplicated Core
- TMR Strategy in RISC-V Core:
 - Triplication of
 - All sequential elements
 - All combinational logic
 - Majority voters after each sequential Element
 - Additional feedback path
 - Three separate clock-trees
- TMR SRAM Strategy:
 - 3 Dual-Port SRAM Instances
 - Scrubbing on second SRAM port
 - 3x 32Kbyte

Heavy-Ion Irradiation

- Heavy-Ion irradiation results
 - Effective SEU cross-section is larger than in test-structures for sequential elements
 - TMR protection scheme in RISC-V core achieves up to 8000x improvement
 - SEFI cross-section directly compared to the SEU cross-section
- Residual functional error rate remains
- Observed types of SEFIs during Irradiation:
 - Silent Data Corruption (SDC)
 - Timing Deviation
 - **Timeout** (Reset or reprogramming required)

- Data or Instructions in the SRAM corrupted
- Reprogramming of the SRAM required
- Reprogramming rate:
 - For low LET (<16 MeV.cm²/mg): Reprogramming required in 30% of SEFIs
 - For higher LET (>16 MeV.cm²/mg): Reprogramming required for >50% of SEFIs

SRAM Heavy-Ion Irradiation

- Analysis of SRAM as SEFI error source
 - SRAM isolated analyzed under irradiation
 - RISC-V core deactivated
- Reduction of non-correctable SEUs in SRAM through:
 - Triplication of the SRAM
 - Scrubbing of the SRAM
- Residual error rate remains
 - Same order of magnitude as the system's SEFI rate
- Error pattern can be reproduced in SEE injection simulation
 - Occurrence of SEUs between two clock cycles
 - Incorrect scrubber correction can occur
- 17% of all permanent SEUs in SRAM lead to trap of the RISC-V core
 - E.g. invalid instructions or addresses
 - Dhrystone benchmark
 - Dependent on distribution of data / instructions
- Remaining permanent SEUs lead to SDCs or are masked by software

SEE-Injection Simulation Framework

- Designed to replicate real-world impact of SEE
- Intended for simulations with synthesis or place and route netlists
- Ability to include information about the physical placement of the cells in the design
- Automatic generation of SystemVerilog assertion
- No modification of design or netlist required
 - modification of cell library required
- VPI Functions used to communicate with simulator

SEE-Injection Signal Selection

- Randomization
- Reproducibility and random stability
 - Framework uses PRNG with one-time seed provided by simulator
- Fault intent specification
 - Scope to be covered by injection (top level of injection)
 - Type of fault to inject (SET / SEU / Macro specific)
- Filtering options
 - Nodes to be injected on
 - Netlist exclusions (string manipulation)
 - Cell type selection (with DEF mapping)

SEE-Injection Layout Information

- Additional to randomized selection from netlist
- Layout Information from DEF
 - Positions mapped to faultable node objects
 - Distance from faulted node to other nodes calculated
 - Interaction probability determines secondary SEEs
 - Additional nodes upset

Fachhochschule Dortmund University of Applied Sciences and Arts

Runtime SEU | SET Modelling

- SET are less meaningful in RTL
 - Synthesis and place & route netlist used
- SEU Injection requires instrumentation of the STD cell library
 - Added internal signal for flipping the stored value
- Select (randomized) node and SEE duration
- Read state of selected node via VPI functions from simulator
- Invert state of the net using VPI put value function with force flag
- Create a callback for the SEE duration
- Simulator continues for the given amount of time
- Callback from Simulator when time elapsed
- Release the net using VPI function
- SEE duration in SEUs: Time the upset is actively forced
 - Upset is kept until next valid sequential activity

Standard Cell Library Instrumentation

- Timing of SEE independent of clock (randomized)
- SET in the combinational logic or clock-tree
 - ightarrow Timing violations in sequential logic possible
 - Setup, Hold, Width violations
- Typical standard cell models set sequential output to X (unknown)
- Propagation through netlist according to simulator settings

SET in comb. logic (setup / hold violation)

- Modified standard cell library to replicate real-world behavior
 - Randomized valid output propagated to next cells

SET in comb. logic (setup / hold violation), output randomized

SET in clock-tree (setup / hold / width violation)

Standard Cell Library Instrumentation

- Timing violation propagation instrumentation:
 - Replicate real-world behavior of cell
 - Separate probability calculation for
 - Setup / Hold
 - Width (clock)
 - Randomized output
 - Modified primitives required
- SEE Injection instrumentation:
 - Introduction of Keyword
 - Detected by node extraction step of framework
 - SEU: Additional signal for inverting the stored value
 - Original STD cell primitives may be reused

•

SRAM Macro Cell Instrumentation

- SRAM macros handled differently than standard cells
 - Depending on SRAM Cells used, location information not available
 - Interleaving architecture, the bits in a data word are not physically adjacent
 - Multiple-bit upset (MBU) distribution can be used
 - Randomized distribution across multiple bits & multiple words
- Typical foundry HDL SRAM models assume worst case
 - Read operations are generally not critical regarding internal state
 - Write operation to unknown address invalidates entire memory
- Foundry SRAM models modified to replicate real-world behavior
- Timing violation handling
 - Control Signals: Assume random operation
 - Address: Assume single randomized address
 - Data input: Store randomized word

STRV-R1 SEU Contributing Sources

University of Applied Sciences and Arts

- Apart from direct hits, data in sequential elements can be modified by:
- SETs in clock buffers / inverter of the clock tree
 - Depending on the level in the clock tree large number of leafs affected
 - Additional clock pulses inserted
- Additional clock pulses can be masked by inactive / static data path
 - Static data paths common in general purpose circuits such as RISC-V core
- Clock pulse timing width violation in sequential logic
 - Sequential element may not store new state
 - Reduced impact compared to SET in clock signals
- Capture of SET in data path
 - Masked by combinational logic and application-specific state
 - Setup-Hold violations can mask impact of SET
- Simulation constraints for simulating additional contributing SEU sources:
 - Dhrystone Benchmark executed by RISC-V core
 - SETs equally distributed across clock cycle
 - Shown randomized distribution of SET pulse duration used

Fachhochschule Dortmund University of Applied Sciences and Arts

SET Capture in sequential logic

- Single Event Transients captured by endpoint sequential Logic
- Cone of logic as input to sequential Logic
 - Dissipation during propagation through design
 - Elongation during propagation through design
 - Masking via other combinational logic
- Application-specific designs contain a significantly number of masked data paths
 - SET capture rate in specific test structure is higher
- Simulation constraints for SETs in data paths:
 - Different application software executed
 - SETs equally distributed across clock cycle

.

Summary | Conclusion

- Heavy-Ion irradiation results
 - Effective SEU cross-section is larger than in test-structures for sequential elements
 - TMR protection scheme in RISC-V core achieves up to 8000x improvement
 - Residual error rate remains, SEFIs present
 - Second irradiation, SRAM individually analyzed
 - Despite SRAM triplication and SRAM, errors present in data stored in SRAM
 - Errors present without RISC-V core activity, cause in SRAM itself, not RISC-V core
- SEE-Injection simulation framework has been developed
 - Designed to replicate the real-world impact of SEE
 - Intended for simulations using synthesis or place and route netlists
 - Ability to incorporate physical placement information
 - Simulation of multiple concurrent SEEs