

Irradiation Studies on single HBT Test Structures

Benjamin Weinläder 20.06.2024 CMOS Verbund

BiCMOS Process

- combines bipolar (HBT) and MOS transistors
	- o allows to benefit from CMOS logic
- advantages of bipolar transistors:
	- o fast switching times
	- o large current gain

scales with current

- **→** build HV-MAPS in a BiCMOS process → use single HBT to boost the
	- performance of the in-pixel amplifier
- **→** achieve very good time resolution

 Φ

Radiation Damage

- Slowly, over time
	- o Accumulation of defects/ trapped charge
	- o Shift of transistor properties
	- o Increase of leakage current

- **•** Directly visible effect
	- o Latch-up: Short, thus thermal destruction
	- o Upset: Bit flips, errors in the digital part
	- o Gate rupture: Destruction of the gate isolation

3

◉

 $\overline{\mathbf{\Theta}}$

 \bigcirc

20/06/2024 CMOS Verbund - Benjamin Weinläder

Heterojunction Bipolar Transistor

5

 $\textcolor{red}{\textcircled{\footnotesize{1}}\textcolor{green}{\bullet}}$

 $\overline{\bullet}$

 \bigcirc

Heterojunction Bipolar Transistor

Expected radiation damage

- lonization:
	- o Trapped charge emitter-base spacer oxide
	- → Forming a **generation-recombination center**

- \rightarrow Additional recombination/ leakage current
- \rightarrow Increase in I_h
- \rightarrow Especially dominate for low $V_{be} \leftrightarrow I_b$

Heterojunction Bipolar Transistor

Expected radiation damage

- Non-Ionizing:
	- o Defects in the base region
	- → **Also forming generation-recombination centers**
	- \rightarrow Lifetime τ of minority charge is reduced
	- $\rightarrow I_b \sim 1/\tau$ increase
	- o **Change of charge density**
	- \rightarrow Resistivity change in n-type silicon (emitter and collector region)

7

base is particularly

prone as only very

small currents flow

- Resistance increases
- \rightarrow Overall decrease of I_c

[Institut](https://ric.ijs.si/en/) Jožef Stefan

8

Neutron irradiation

Irradiation at the **Reactor Infrastructure Centre** in **Ljubljana**

Research TRIGA reactor

20/06/2024 CMOS Verbund - Benjamin Weinläder

Setup

 $\bf \hat{\bm{\odot}}$

◉

- Irradiated samples are glued and wire bonded on a test PCB
	- o Stored in the freezer to minimize annealing
- HBT is powered via 2 Source Measure Units (SMUs)

lc

HBT

- o Voltage is applied while currents are measured
- All measurements are done within a climate chamber at $T = -15$ °C

lb

Vbe

9

20/06/2024 CMOS Verbund - Benjamin Weinläder

Vce

Decoupling capacities on PCB induce these wiggles

Base current I_h

 $\bf \hat{O}$

 \odot

- As expected: clear increase of the base current
	- \circ More dominate at low V_{be}
- Chip 'epi_16' clear outlier
	- o Could be sensor-to-sensor variation

Reference measurement before irradiation would help a lot

Collector current I_c

- No significant dependency visible
	- o Overall slight decrease after irradiation, but no direct relation
	- o Most probably dominated by chip-to-chip variations

 $\overline{\mathbf{\Theta}}$

 \bigcirc

Findings:

 $\bf \hat{O}$

 \odot

- HBT can be still operated after irradiated with a large dose $(2e15 n_{eq}/cm^2)$
	- o But the base current will increase significantly
	- o Need to be considered already in the circuit design

Current gain $\beta = \frac{I_c}{I_c}$ $I_{\bm{b}}$

Problems:

 $\bf \hat{O}$

 \odot

- Reference measurements are missing to account for chip-tochip variations
- Single Transistors are very vulnerable
	- o Several were destroyed while testing
	- \rightarrow Limiting the statistics

Proton irradiation

Irradiation at the **Helmholtz-Instituts für Strahlen- und Kernphysik** in Bonn Isochron-Zyklotron

 $\overline{\bullet}$

20/06/2024 CMOS Verbund - Benjamin Weinläder 14

Setup

 $\frac{1}{\Box}$

 $|\vec{\bullet}|$

 \bigcirc

◉

- ~2h down time after irradiation
- 3-4h beam setup at each start-up

Measure same chip in between of irradiation steps

20/06/2024 CMOS Verbund - Benjamin Weinläder

Setup

 $\overline{\mathbf{C}}$

 \bigodot

- 3 samples were measured
	- \circ Up to 1.1e15 n_{eq}/cm^2
	- o With ~5 steps in between

Problems:

- Due to the long cables no Gummel-Poon plots could be produced
- Temperature was not really stable

- New measurement configuration:
	- \circ Fixed value $I_b = 30nA$
	- \circ Again β decreases with increasing dose
	- $\rightarrow I_c$ also decreases

Each curve is measured directly after an irradiation step

 Φ

- For now: β is less temperate dependent
	- o Most prominent dependencies from I_b and I_c cancel out
- Large chip-to-chip variation even before irradiation
- Steep performance decrease at low fluences

 $\overline{\mathbf{\Theta}}$

- For now: β is less temperate dependent
	- o Most prominent dependencies from I_b and I_c cancel out
- Large chip-to-chip variation even before irradiation
- Steep performance decrease at low fluences

Performance increase already at $I_h = 50nA$

 $\overline{\mathbf{\Theta}}$

Neutrons vs Protons

- Proton seem to have an forward Beta larger effect already at lower fluences
	- o Additional Ionization damage
	- \rightarrow Influence should be minimal, since the HBT was not powered during irradiation
- Chip-to-chip variations have an huge influence
- Even after a large dose all samples are still working

Fixed $I_h = 30nA$ Sensor std_16 - Proton Irr. Sensor std 17 - Proton Irr. 1200 Sensor epi_13 - Proton Irr. Sensor epi_15 - Neutron Irr. Sensor epi_16 - Neutron Irr. 1000 Sensor epi_17 - Neutron Irr. Sensor std 22 - Neutron Irr. Sensor std 24 - Neutron Irr. Sensor std_19 - Neutron Irr. 800 600 400 200 15 Ω 5 10 20 Fluence [1e14 MeV n eq]

21

 $\bf \hat{\bm{\Theta}}$

◉

Neutrons vs Protons

- Proton seem to have an larger effect already at lower fluences
	- o Additional Ionization damage
	- \rightarrow Influence should be minimal, since the HBT was not powered during irradiation
- Chip-to-chip variations have an huge influence
- Even after a large dose all samples are still working

22

 $\bf \hat{\bm{\Theta}}$

◉

Annealing – neutron irradiated samples

- Lattice defects are not fixed
	- \rightarrow Can be cured depending on temperature and time
- After first step no significant change measured

◉

 $|\Phi$

Annealing – neutron irradiated samples

- Lattice defects are not fixed
	- \rightarrow Can be cured depending on temperature and time
- After first step no significant change measured

◉

 Φ

Lessons learned

Neutron irradiation

- Normally only possible to irradiate bare chips
	- \rightarrow Reference measurement not easy
		- ! Need to deal with chip-to-chip variations !
- In principle, an in-situ measurement at the TRIGA Mark II research reactor in Mainz would be possible
	- o Large effort needed, to bring a setup close to the reactor

 \odot

Lessons learned

Proton irradiation

- Measuring in between irradiation steps offers a lot potential
	- o Having a large distance between measuring equipment and a fragile test structure can induce some problems
	- A better/ more stable temperature control would help a lot
- The cyclotron needs a long time to power on, 3-4h until everything is setup
- For next time: also irradiate while the device is powered
	- o Was not done to reduce the risk of total failure of the samples

In general:

! Single transistor test structures are fragile !

References

- John Cressler, Radiation Effects in SiGe Technology. 2013, DOI: 10.1109/TNS.2013.2248167
- Gerhard Lutz, Semiconductor Radiation Detectors. 2007, DOI: 10.1007/978-3-540-71679-2
- Michael Moll, Radiation damage in silicon particle detectors: Microscopic defects and macroscopic properties. 1999, Hamburg
- Xiang-Ti Meng et al., Effects of neutron irradiation on SiGe HBT and Si BJT devices. 2003, DOI: 10.1023/A:1022977828563
- Vinayakprasanna N. Hegde et al., Reliability studies on bipolar transistors under different particles radiation. 2023, DOI: /10.1016/j.sse.2023.108671

Primary Knock on Atom

● Point defects

◉

 \bigcirc

 \bigodot

- 1. Vacancies \rightarrow empty lattice sites
- 2. Interstitials \rightarrow atoms outside the regular lattice
- 3. Frenkel defects \rightarrow combining both
- **Clusters**
	- o Aggregation of point defects
	- o Typically at the end of a recoil track
		- **Scattering cross-section increases with decreasing** energy

20/06/2024 CMOS Verbund - Benjamin Weinläder

Electric Properties of Defects

● **Recombination-generation center**

- Capture or emit charge carriers
	- ! Increase of leakage current at junctions !
- ! Shift in a transistor threshold voltage !

Trapping center

- o Capture charge carriers and re-emits them with time delay ! Generates timing-jitter on signals!
- **Change of charge density**
	- ! Change of the effective resistivity !

Increased hole density at the oxide surface \rightarrow recombinationgeneration center

29

Annealing

- Position of most lattice defects are not fixed
	- o At certain temperatures defects become mobile
	- o Possibility to recombine with the respective counterpart increases
	- \rightarrow Depends on temperature and time

IMPURITY IN INTERSTITIAL SITE SILICON
TINTERSTITIAL SILICON₋
ATOMS FRENKEL
DEFECT IMPURITY ON SUBSTITUTIONAL SITE - VACANCY DOI: [10.1007/978-3-540-71679-2](https://link.springer.com/book/10.1007/978-3-540-71679-2)

30

 \bigcirc

Non Ionizing Energy Loss hypotheses

- Radiation damage depends on the incident particle type and energy
	- o Differences are smoothed due to secondary interactions
- Radiation damage **↔** Non Ionizing Energy Loss (NIEL)
	- o *NIEL* $\sim D(E)$ ← Displacement damage function

 $\bf \hat{O}$

 \bigodot

o Normalized to $1 MeV$ Neutrons: $D_n(1 MeV) = 95 MeV mb$

Neutron irradiation

◉

 $|\Phi$

 \odot

● Irradiation at the **Reactor Infrastructure Centre** in **Ljubljana**

