

Irradiation Studies on single HBT Test Structures

Benjamin Weinläder

20.06.2024

CMOS Verbund

BiCMOS Process

- combines bipolar (HBT) and MOS transistors
 - allows to benefit from CMOS logic
- advantages of bipolar transistors:
 - fast switching times
 - large current gain

scales with current

- → build HV-MAPS in a BiCMOS process
- → use single HBT to boost the performance of the in-pixel amplifier
- → achieve very good time resolution

Radiation Damage

- Slowly, over time
 - Accumulation of defects/ trapped charge
 - Shift of transistor properties
 - Increase of leakage current

Single Event Effect

- Directly visible effect
 - Latch-up: Short, thus thermal destruction
 - Upset: Bit flips, errors in the digital part
 - Gate rupture: Destruction of the gate isolation

Ionization

DOI: 10.1109/TNS.2008.2001040

- Silicon:
 - Charge recombines or is removed by existing elec. Fields
- Oxide:
 - Holes get trapped, accumulate at the surface
 - Change transistor threshold voltage
 - Increase leakage current

Primary Knock on Atom (PKA)

Van Lint et al., 1980

- Displacement of a lattice atom
 - Recoils knock out additional atoms + energy transfer via ionization
 - **Recombination-generation center**
 - Increase of leakage current at junctions!
 - **Trapping center**
 - Generates timing-jitter on signals
 - Change of charge density
 - Change in resistivity

Heterojunction Bipolar Transistor

Heterojunction Bipolar Transistor

Expected radiation damage

lonization:

- Trapped charge emitter-base spacer oxide
- → Forming a **generation-recombination center**
- → Additional recombination/ leakage current
- \rightarrow Increase in I_b
- \rightarrow Especially dominate for low $V_{be} \leftrightarrow I_{b}$

Incident Particle

Heterojunction Bipolar Transistor

20/06/2024

Expected radiation damage

- Non-lonizing:
 - Defects in the base region
 - → Also forming generation-recombination centers
 - \rightarrow Lifetime τ of minority charge is reduced
 - $\rightarrow I_b \sim 1/\tau$ increase
 - Change of charge density
 - → Resistivity change in n-type silicon (emitter and collector region)
 - → Resistance increases
 - \rightarrow Overall decrease of I_c

CMOS Verbund - Benjamin Weinläder

base is particularly prone as only very small currents flow

Institut Jožef Stefan

Neutron irradiation

Irradiation at the **Reactor Infrastructure Centre** in **Ljubljana**Research TRIGA reactor

Setup

- Irradiated samples are glued and wire bonded on a test PCB
 - Stored in the freezer to minimize annealing
- HBT is powered via 2 Source Measure Units (SMUs)
 - Voltage is applied while currents are measured
- All measurements are done within a climate chamber at $T=-15^{\circ}C$

Decoupling capacities on PCB induce these wiggles

Base current I_h

- As expected: clear increase of the base current
 - \circ More dominate at low V_{he}
- Chip 'epi_16' clear outlier
 - Could be sensor-to-sensor variation

Reference measurement before irradiation would help a lot

Typical operation range

Collector current I_c

- No significant dependency visible
 - Overall slight decrease after irradiation, but no direct relation
 - Most probably dominated by chip-to-chip variations

3

Findings:

- HBT can be still operated after irradiated with a large dose $(2e15 n_{eq}/cm^2)$
 - But the base current will increase significantly
 - Need to be considered already in the circuit design

Current gain $\beta = \frac{I_c}{I_b}$

Problems:

- Reference measurements are missing to account for chip-tochip variations
- Single Transistors are very vulnerable
 - Several were destroyed while testing
 - → Limiting the statistics

Current gain $\beta = \frac{I_c}{I_b}$

Typical operation range

Proton irradiation

Irradiation at the **Helmholtz-Instituts für Strahlen- und Kernphysik** in Bonn Isochron-Zyklotron

Setup

- ~2h down time after irradiation
- 3-4h beam setup at each start-up

Measure same chip in between of irradiation steps

- New measurement configuration:
 - Fixed value $I_b = 30nA$
 - \circ Again β decreases with increasing dose
 - \rightarrow I_c also decreases

Each curve is measured directly after an irradiation step

 I_c increases after the first step?

20/06/2024

Results after irradiation New measurement

- New measurement configuration:
 - Fixed value $I_b = 30nA$
 - \circ Again β decreases with increasing dose
 - \rightarrow I_c also decreases

Each curve is measured directly after an irradiation step

Sensor std 16 - Proton Irr.

Sensor std_17 - Proton Irr. Sensor epi_13 - Proton Irr.

- For now: β is less temperate dependent
 - \circ Most prominent dependencies from I_b and I_c cancel out
- Large chip-to-chip variation even before irradiation
- Steep performance decrease at low fluences

Keep in mind: $I_b = 30nA$ is a low power working point

- For now: β is less temperate dependent
 - \circ Most prominent dependencies from I_b and I_c cancel out
- Large chip-to-chip variation even before irradiation
- Steep performance decrease at low fluences

Performance increase already at $I_h = 50nA$

Neutrons vs Protons

- Proton seem to have an larger effect already at lower fluences
 - Additional Ionization damage
 - → Influence should be minimal, since the HBT was not powered during irradiation
- Chip-to-chip variations have an huge influence
- Even after a large dose all samples are still working

Neutrons vs Protons

- Proton seem to have an larger effect already at lower fluences
 - Additional Ionization damage
 - → Influence should be minimal, since the HBT was not powered during irradiation
- Chip-to-chip variations have an huge influence
- Even after a large dose all samples are still working

Annealing - neutron irradiated samples

- Lattice defects are not fixed
 - → Can be cured depending on temperature and time
- After first step no significant change measured

Annealing - neutron irradiated samples

- Lattice defects are not fixed
 - → Can be cured depending on temperature and time
- After first step no significant change measured

20/06/2024

CMOS Verbund - Benjamin Weinläder

Lessons learned

Neutron irradiation

- Normally only possible to irradiate bare chips
 - → Reference measurement not easy
 - ! Need to deal with chip-to-chip variations!
- In principle, an in-situ measurement at the **TRIGA Mark II** research reactor in Mainz would be possible
 - Large effort needed, to bring a setup close to the reactor

Lessons learned

Proton irradiation

- Measuring in between irradiation steps offers a lot potential
 - Having a large distance between measuring equipment and a fragile test structure can induce some problems
 - A better/ more stable temperature control would help a lot
- The cyclotron needs a long time to power on, 3-4h until everything is setup
- For next time: also irradiate while the device is powered
 - Was not done to reduce the risk of total failure of the samples

In general:

! Single transistor test structures are fragile!

- John Cressler, Radiation Effects in SiGe Technology. 2013, DOI: 10.1109/TNS.2013.2248167
- Gerhard Lutz, Semiconductor Radiation Detectors. 2007, DOI: 10.1007/978-3-540-71679-2
- Michael Moll, Radiation damage in silicon particle detectors: Microscopic defects and macroscopic properties. 1999, Hamburg
- Xiang-Ti Meng et al., Effects of neutron irradiation on SiGe HBT and Si BJT devices. 2003, DOI: 10.1023/A:1022977828563
- Vinayakprasanna N. Hegde et al., Reliability studies on bipolar transistors under different particles radiation. 2023, DOI: /10.1016/j.sse.2023.108671

Primary Knock on Atom

Different types of lattice defects

Point defects

- 1. Vacancies \rightarrow empty lattice sites
- Interstitials → atoms outside the regular lattice
- 3. Frenkel defects \rightarrow combining both

Clusters

- Aggregation of point defects
- Typically at the end of a recoil track
 - Scattering cross-section increases with decreasing energy

Electric Properties of Defects

• Recombination-generation center

- Capture or emit charge carriers
 - Increase of leakage current at junctions
 - Shift in a transistor threshold voltage

Trapping center

- Capture charge carriers and re-emits them with time delay
 - Generates timing-jitter on signals

Change of charge density

! Change of the effective resistivity!

Also holds for defects caused by ionization

Increased hole density at the oxide surface → recombination-generation center

Annealing

- Position of most lattice defects are not fixed
 - At certain temperatures defects become mobile
 - Possibility to recombine with the respective counterpart increases
 - → Depends on temperature and time

DOI: 10.1007/978-3-540-71679-2

Non Ionizing Energy Loss hypotheses

- Radiation damage depends on the incident particle type and energy
 - Differences are smoothed due to secondary interactions
- Radiation damage ←→ Non Ionizing Energy Loss (NIEL)
 - $NIEL \sim D(E) \leftarrow Displacement damage function$
 - O Normalized to 1 MeV Neutrons: $D_n(1 MeV) = 95 MeV mb$

20/06/2024

Hardness factor κ

$$\kappa = \frac{\int D(E)\phi(E)dE}{D_n(1MeV) \cdot \int \phi(E)dE}$$

Equivalent fluence:

$$\Phi_{eq} = \kappa \cdot \Phi = \kappa \cdot \int \phi(E) dE$$

Individual energy spectra $\phi(E)$

31

CMOS Verbund - Benjamin Weinläder

Heterojunction Bipolar Transistor n⁺ Si p Si_{1-x}Ge_x n Si Emitter Silicide poly-Si ΔE_a eV_{eb} o⊃ Energy Base poly-Si eV_{bc} SIC Ν STI Highly-doped collector -U_{cb} x - coordinate DOI: 10.1201/9781003339519-2 Careful: normal representation rotated by 180° 20/06/2024 CMOS Verbund - Benjamin Weinläder

Neutron irradiation

- Irradiation at the Reactor Infrastructure Centre in Ljubljana
 - Research TRIGA reactor

CMOS Verbund - Benjamin Weinläder

F 19