

CMOS VERBUND MEETING THE MONOPIX2 CHIPS

Lars Schall on behalf of the Monopix design- and testing-teams

6/19/24

Lars Schall – lars.schall@uni-bonn.de

- Large collection electrode design:
 - Large sensor capacitance O(100 fF)
 - Short drift distance
 - Uniform electric field across pixel area
- \rightarrow Radiation hard
- 150 nm LFoundry CMOS technology
- Substrate resistivity >2 kΩcm
- Latest DMAPS LF-Monopix2:
 - Large scale 1x2 cm² chip with 150x50 μ m² pixel pitch
 - 6-bit ToT information, 4-bit in-pixel threshold tuning
 - Fast column drain readout architecture (FE-I3 like)

Studies with Irradiated LF-Monopix2

- NIEL Irradiated samples (100 μm thickness, backside processed) available:
 - Proton irradiated: 1 x 10¹⁵, 2 x 10¹⁵ neq/cm² (Bonn and Birmingham irradiation sites)
 - Neutron irradiated: 5 x 10¹⁴, 1 x 10¹⁵, 2 x 10¹⁵ neq/cm² (Ljubljana irradiation site, tests ongoing)
 - All samples are annealed (80 min @ 60 °C)
- Breakdown voltage around 460 V before irradiation
 - No breakdown up to 300 V after irradiation
 - Sufficient for full depletion after irradiation
 - Facilitates high radiation tolerance
 - Increase in leakage current ca. 6 μA/cm² per 1 x 10¹⁵ neq/cm² irradiation step (@ 100 V)

UNIVERSITÄT BONN

- Operated in controlled laboratory environment @ -20 °C
- Typical operational threshold of around 2.0 ± 0.1 ke⁻
 - Still achievable at highest available NIEL fluence
 - Charge MPV of MIPs at full depletion roughly 6 ke⁻ (for 100 μ m thickness)
- ENC more than doubles after 2 x 10¹⁵ neq/cm² proton irradiation

- Get calibrated charge MPV from Landau shaped beam spectrum
 - Reach full depletion after 2 x 10¹⁵ neq/cm² fluence
 - Required voltage increases from 15 V to >150 V
- Very high hit detection efficiency >99 % achievable for all fluences
- >98 % mean in-time efficiency (25 ns) at highest fluence

UNIVERSITÄT BONN

In-time Efficiency for Higher Gain

900

- Pixels with smaller feedback capacitance implemented on the chip
 - Expected higher gain confirmed by measurement after
- Higher signal gain improves timing performance
 - Mean in-time efficiency of 99.6% —
 - Ca. 0.5% pixels masked —

row [µm]

12000

Measured gain @ 1e15 neg/cm²

- Irradiated up to 100 Mrad total ionizing dose, fully responsive throughout the entire campaign
 - Expected peak in VDDD current around 1 10 Mrad, drop in VDDA current towards high doses
 - No change or drop in gain observable throughout irradiation
- Typical operational threshold and threshold dispersion reachable after 100 Mrad and annealing

- Small collection electrode design:
 - Small sensor capacitance (<5 fF)
 - Longer drift distances
 - Potentially regions with low electric field
- \rightarrow Low power and low noise operation
- 180 nm TowerSemi CMOS technology
- Substrate resistivity >1 kΩcm
- Latest DMAPS TJ-Monopix2:
 - Large scale $2x2 \text{ cm}^2$ chip with $33x33 \mu \text{m}^2$ pixel pitch
 - 7-bit ToT information, 3-bit in-pixel threshold tuning
 - Fast column drain readout architecture (FE-I3 like)

- Typical operating conditions around 200 250 e⁻ threshold and 6 e⁻ ENC
 - Sufficient for excellent hit-detection efficiency (MIP charge MPV >2500 e⁻)
- Measure FE timing response with analog charge injection, no sensor dependent contribution
 - Front-end <100 ps time resolution for MIP charge regime

- Very uniform hit-detection efficiency >99.9 % before irradiation
- 99.68 % of hits within a 25 ns window, still 99 % within 10 ns window
- Achievable spatial resolution <9 μ m with charge weighted clustering

50

45

- Correct time walk based on amplitude offline
 - Total time resolution 1 2 ns (depending on FE variant and chip)
 - Uncertainty limited by available TDC module (640 MHz)
 - Started development of high-resolution TDC (<100 ps binning) module in FPGA
- Study trigger delay relative to charge collection electrode
 - Electrodes indicated as white dot
- Up to 3.5 ns difference in delay due to charge propagation time to small electrode

- Irradiated up to 100 Mrad total ionizing dose, fully responsive throughout the entire campaign
 - Peak in current around 1 10 Mrad, highest relative increase for VDDD
 - Periphery biggest absolute contributor to power consumption
 - Still <20 e⁻ ENC after 100 Mrad before annealing
- Typical operational threshold still reachable after 100 Mrad and annealing

Perspective of TJ-Monopix2

- Belle II vertexing detector (VTX) upgrade planned for LS2 (2028)
- 5 layer all silicon with identical DMAPS across all layers
 - L1 & L2: Air cooled all silicon ladders
 - L3 to L5: Carbon fiber support structure with liquid cooling
- New DMAPS based on TJ-Monopix2: Optimized BELIe II pIXel sensor
 - Matrix inherited completely
 - LDO regulators designed by FH Dortmund
 - OBELIX-1 to be submitted Fall 2024

LF-Monopix2:

- Excellent radiation hardness without significant performance degradation up to 2 x 10¹⁵ neq/cm²
 NIEL fluence and 100 Mrad TID
 - Further irradiation up to 5×10^{15} neq/cm² NIEL fluence and >100 Mrad TID planned

TJ-Monopix2:

- Very low noise and low threshold operation with excellent spatial resolution
- >99 % hit-detection efficiency and very high in-time ratio >99 % within 25 ns
- Fully functional after 100 Mrad TID
 - Characterization of irradiated samples up to 1.5 x 10¹⁵ neq/cm² NIEL fluence ongoing

Perspectives:

• New DMAPS based on TJ-Monopix2 under development for Belle II VTX upgrade proposal

Thank you for your attention!

The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF)

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No. 675587-STREAM, 654168 (AIDA-2020) and 101004761 (AIDA-Innova)

This project has received funding from the European Union's Horizon Europe Research and Innovation programme under Grant Agreement No 101057511.

Backup

- Beam tests at DESY (1 6 GeV e⁻ beam)
- Typical beam test setup:
 - EUDET-type beam telescope
 - Trigger-scintillator
 - Time reference plane
 - Trigger logic unit
 - DUT
- Irradiated DUTs are cooled to -20°C

