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Motivation

All ATLAS and CMS upgrade strip detectors are fabricated in Hamamatsu
Photonics HPK

Seems like large area strips only are fabricated in microelectronics foundries

Here we want to show that also CMOS foundries can fabricate strip detectors and
do not have any impact in the performance
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Passive CMOS Strip

Fabrication in LFoundry with a 150 nm production
NO electronics included → therefore Passive
FZ 150 µm thick wafer
We fabricated 2.1 cm and 4.1 cm long strips:
1. 1 cm2 reticle used (2 set of masks used)
2. The strips had to be stitched 3 or 5 times

We want to demonstrate that stitching does not affect the performance of the
strips
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Passive CMOS strip detector
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Two designs of strips: Regular design and Low Dose design

Regular design

Similar to the ATLAS strip design

Low dose design

Using low dose implant and a MIM
capacitor
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Testbeam results
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Test Beam results

Measurements at DESY, with ADENIUM Telescope (6 planes of Alpide sensors)
Several TB campaigns
Electron beam 4.2GeV (might vary in each campaign)
Readout with ALiBaVa system
Cooling to −45 ◦C (two possibilities: with dry ice and chiller + peltiers setup)
CMS reference plane

Cooling achieved by filling dry ice in cylinders

Temperature reached below �45 �C
Run time limited to ca. 1.5 h

Temperature fluctuations during one run

Box moving due to dry ice evaporating
Albert-Ludwigs-Universität Freiburg | CMOS Strip Test Beam | 16.01.2024 3/17

DUT Cooling - ITk Box
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Signal to noise ratio Nuclear Inst. and Methods in Physics Research, A 1064 (2024) 169407

3

N. Davis et al.

Fig. 3. SNR distribution of the Regular design (red, solid), combined with the
corresponding hit detection efficiency (blue, crosses) for the unirradiated short strip
sensor. The SNR distribution comprises the Gaussian noise distribution and the Landau-
shaped signal distribution. The Gaussian noise peak is depicted partially as it is
significantly larger than the signal peak.

4.2. In-strip hit detection efficiency

Visualising the hit detection efficiency within one strip allows the
investigation of any structures along or across the strip, leading to po-
tential inefficiencies. In order to investigate if the technique of stitching
has any impact on the hit detection efficiency, the in-strip efficiency
is studied for all three designs. The corresponding distribution for the
fully depleted Regular and Low Dose 55 design of the unirradiated
sample is shown in Fig. 4, based on the folded statistics of available
strips for the analysis of each design (see [11] for the results concerning
the Low Dose 30 design). Overall, the Regular design is more efficient
than the Low Dose 55 design. The Low Dose 55 design shows a slight
decrease in efficiency across the strip towards the strip edge. Apart from
statistical fluctuations, however, the efficiency is distributed homoge-
neously along the strip for both designs. Therefore, the stitching does
not impact the efficiency of the sensor, as the stitching lines highlighted
in Fig. 2 do not show in the in-strip efficiency.

Fig. 5 shows the in-strip efficiency distribution for the Regular
and Low Dose 55 design of the irradiated sample to evaluate if the
same finding holds after irradiation. The irradiated sample is depleted
at 250V. Overall, the efficiency decreases after irradiation for both
designs. In particular, the Regular design shows a substantial decline in
efficiency towards the inter-strip region after irradiation. However, the
in-strip efficiency shows no sign of the stitching lines along the sensor.
In addition, no performance differences regarding the hit detection
efficiency have been observed between long and short strip samples
for the unirradiated and irradiated cases.

4.3. Simulation

Initial sensor simulations were performed to understand the per-
formance characteristics in the three sensor layouts. The electric field
simulated with TCAD is used as an input to the Allpix2 framework. That
allows for visualising the path and collection of the generated charge
carriers within the sensor thickness based on the electric field. Fig. 6
shows the corresponding line graphs for the Regular and Low Dose 55
designs. They are generated by simulating a Minimum Ionising Particle
(MIP) impinging on a strip from the top and ionising the sensor material
while travelling through the depleted sensor thickness. The blue lines
indicate the generated electrons’ drift path towards the collection elec-
trode at the top, located at integer values in Y . It is visible that there
is no substantial difference in the charge carrier propagation between
the regular and the Low Dose 55 design. Both designs show significant
charge collection by drift (indicated by straight lines). However, the
Regular design exhibits a stronger drift towards the collection electrode
between the strips than the Low Dose 55 design, due to a larger electric
field magnitude near the collection electrode for the Regular design.
The impact of the different electric field configurations on the various
sensor layouts and their final performance needs further investigation.

Fig. 4. In-strip efficiency of the Regular (top) and the Low Dose 55 (bottom) designs
of the unirradiated short strip sensor at a threshold of three. The mean efficiency along
the X- and Y -axis is shown. The stitching line across the sensor is located at Y = 0.

Fig. 5. In-strip efficiency of the Regular (top) and the Low Dose 55 (bottom) designs
of a neutron-irradiated long strip sensor at a threshold of three. The mean efficiency
along the X- and Y -axis is shown. The stitching line across the sensor is located at Y
= 0.

5. Conclusion

Stitched, passive CMOS strip sensors represent an alternative silicon
sensor concept that can be used for charged particle tracking. Two
samples with three sensor designs have been characterised in a test
beam environment. Overall, the Regular implant design shows the best
performance regarding hit detection efficiency. The efficiency is lower
for the Low Dose designs and declines after neutron-irradiation for all

[N. Davis et al., NIMA 1064 (2024) 169407]
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TB analysis, seed cuts

[F. Lex, DPG 2024]

Seed cuts are crucial
to take only the
signal and exclude
the noise

High irradiated
sensors have rather
bad seed cut
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Testbeam results, unirradiated sensors @100V

In-hit hit efficiency

[N. Davis, DPG 2024]

Good efficiency in the sensor

No impact of the stitching
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Testbeam in-strip hit efficiency, neutron irradiated

[F. Lex, DPG 2024]

Neutron irradiated 3× 1014 neq/cm
2

In strip efficiency starts to decrease in the interstrip region for the regular
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Testbeam in-strip hit efficiency, neutron irradiated

[F. Lex, DPG 2024]

Neutron irradiated 1× 1016 neq/cm
2

Sensors not fully depleted, therefore the low efficiency

In strip efficiency decreases in the interstrip region for the regular
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Testbeam in-strip hit efficiency, proton (CERN) irradiated

[F. Lex, DPG 2024]

Proton irradiated 1× 1015 neq/cm
2

Good efficiency after proton irradiation

starts to loose efficiency between strips
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Other lab results
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Alpha measurements: Measurements taken with alpha + amplifier

Signal amplitude vs distance of alpha
source
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[M. Baselga et al., Vertex23]
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TCAD simulations (Synopsys Sentaurus)

16 Passive CMOS strips 20/06/2024 Dortmund - Verbund CMOS meeting



TCAD simulations

Simulation of the interstrip capacitance also fits rather well with the measurements

Simulation not from real values of the doping concentrations but approximation
that fits rather well capacitance and current values

[I. Zatocilova, DPG 2024 and NIMA 1061 (2024) 169132]
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Allpix2 simulation

Allpix2 2024 workshop
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TCAD irradiation models
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TCAD irradiation models comparison
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Different stitching mismatch possibilities (Images for context, NOT TO
SCALE)

Separated
stitching

Perfect
fitting

Overlapping
stitching

Shifted
stitching

Rotated
stitching

Only separated stitching considered
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Simulations

1 µm stitching

NOT REALISTIC

Simulations for proving the concept,
and simulating an extreme although
not possible situation

And, of course, for the fun

150 nm stitching

Worst case scenario

probably that is not what happens (I
would expect something <5 nm)

We don’t know the alignment
precision of the stepper motor from
LFoundry, therefore 150 nm stitching is
a value we know about the resolution

2 µm long regular design simulated
**** To be presented to iWoRiD24 ****
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Stitching TCAD simulation doping profile - 2 µm long strip
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Transient - Particle going through middle of the stitching (1 µm) V=100V

Holes density Electrons density
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Transient - Particle going through middle of the stitching gap 150 nm)
V=100V

Holes density Electrons density
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Stitching TCAD simulation - Charge comparison V=100V
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Conclusions

Stitched strips do not show any impact
in the performance, neither
measurements or simulations

Low efficiency after irradiation between strips not fully understood yet

Low dose designs do not show the performance as intended, but regular design is
the most adequate

Next submission only regular design
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Contributions from last year

iWoRiD23

PSD
Proceedings: NIMA 1061 (2024) 169132

RD50

Hiroshima (HSTD13)
Proceedings: NIMA 1064 (2024) 169407

VERTEX23
Proceedings: PoS(VERTEX2023)067

TREDI24

DPG2024

DPG2024

DPG2024

TBBT24

Allpix2 2024 workshop
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https://agenda.infn.it/event/39042/contributions/221968/
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Old publications

NIMA 1033 (2022) 166671

NIMA 1039 (2022) 167031
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Backup
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last year results
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Electrical characterization: IV

Two different back processing:
1. First had very often an early break down voltage when reaching the depletion the

backplane
2. Second had an improvement with the break down voltage

First back processing Second back processing

0 50 100 150 200 250 300
 V [V]

10−10

9−10

8−10

7−10

6−10

5−10

 I[
A

]

Short low dose
Short regular
Long low dose
Long regular

 All sensors

32 Passive CMOS strips 20/06/2024 Dortmund - Verbund CMOS meeting



Electrical characterization: IV with nwell ring
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IV comparison with and without nwell connected

IV curve shows an improvement when biasing the bias and the nwell ring together

Probably the break down is happening to the edge of the detector
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Electrical characterization: CV

CV with the bias pad
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CV with the bias pad and nwell ring
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Decrease of capacitance when increasing the frequency

The effect decreases biasing the nwell ring → some edge effect
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Lab Setup: Alibava board

Readout is done with ALiBaVa system, it contains a mother board and a daughter
board populated with two Beetle readout chip (from LHCb)

It allows an analogue readout of the signal of 258 channels (two Beetle chips)

Sketch of the β source
setup

Sr90

Sensor

Sensor board

Scintillator

β

→ Daughter board
(with two beetle
chips) bonded to the
passive CMOS strips
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Charge in the ALiBaVa setup: Long detector with Sr90 source

Sr90 source located on top of 4 different positions (shown in right image)

[N
IM

A
1033

(2022)
166671]

The three different flavours have similar signal (expected ∼ 11500 electrons)

Low Dose 55 µm has higher noise → it has higher inter strip capacitance
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Transient Current Technique measurements

TCT and edge TCT with IR laser

Collected charge of the regular design of a
long sensor as a function of the laser position
at 50V, illuminating from top [NIMA 1033
(2022) 166671]

Edge-TCT: 2D Scan

unirradiated, short LD30 sensor at 100 V (fully depleted)
homogeneous charge collection (apart from scratches on edge of sensor)
stitches not visible
Niels Sorgenfrei (ALU-Freiburg) Stitched Passive CMOS Strips 40th RD50 Workshop 4 / 12

Edge TCT charge from a short LD30 sensor
at 100V (fully depleted). Stitching does not
change the collected charge [N. Sorgenfrei,
40th RD50, CERN]
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Two Photon Absorption Transient Current Technique measurements

TPA-TCT measurements were performed at CERN SSD
The charge in stitching and outside stitching does not show any difference

IR image TPA-TCT in the stitch area TPA-TCT outside the stitch

Measurements from Sebastian Pape, Michael Moll, Marcos Fernandez Garcia, and
Esteban Curras. More details about this technique in this talk
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Irradiated samples

We wanted to test the sensors under irradiation, we shipped samples to:

23MeV protons @ KIT

Neutrons at Ljubljana

24GeV protons @ IRRAD (CERN)
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Irradiated: IVs and CVs

Irraidated with protons at KIT

23MeV protons
at fluence 1×
1014 neq/cm
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Irradiated: ALiBaVa setup with Sr90

Irraidated with protons at KIT 5× 1014 neq/cm
2 (23MeV and annealed)
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Data not calibrated

Regular design seems to stop working after irradiation

41 Passive CMOS strips 20/06/2024 Dortmund - Verbund CMOS meeting

https://indico.cern.ch/event/797047/contributions/4473298/


Irradiated: Charge in the ALiBaVa setup with Sr90

Signal of a short detector with Sr90 source irradiated

Neutrons fluence 1×1014 neq/cm
2 Neutrons fluence 5×1014 neq/cm

2

[N
IM

A
1039

(2022)
167031]
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Electrical stress to some sensors

Sensors irradiated at CERN we tried to reach the break down voltage (not reached
at 800V)

Some burned damage was inflicted in the sensors (slide 6 shows a non burned
edge detector)
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Conclusions and future work

Conclusions

So far, stitching does not have any impact in the performance of the strip
detectors before and after irradiation

Currently wrapping up the irradiated measurements, finishing the testbeam
analysis and studying if there is a problem with the burning detectors

Future work

Planning a new production with the electronics implemented in the strips is
ongoing → that would allow to avoid all the bondings of the strips to the chips

Production of a full wafer size strip detector with a CMOS foundry

44 Passive CMOS strips 20/06/2024 Dortmund - Verbund CMOS meeting



Irradiated with 23 MeV protons

some burned guard rings after some electrical stress
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TCAD simulations: Simulated device

38th RD50 Workshop (On Line), June 2021
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TCAD simulations: Simulated device zoom

38th RD50 Workshop (On Line), June 2021
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TCAD simulations: Simulated Electric field at 100V

38th RD50 Workshop (On Line), June 2021
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TCAD simulations: Electric field zoom

38th RD50 Workshop (On Line), June 202149 Passive CMOS strips 20/06/2024 Dortmund - Verbund CMOS meeting
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TCAD simulation: Current voltage curve
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TCAD simulation compared with data: capacitance voltage curves
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TCAD simulation: Electric field 100V at the center of the strip
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TCAD simulation: Irradiated electric field

MIP particle going through center of the
strip
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Irradiated: Charge in the ALiBaVa setup with Sr90

Signal of a short detector with Sr90 source irradiated
Charge Collection: Short Sensor

irradiated up to 5 · 1014 neq/cm2

full depletion at ≥ 300 V
increase of signal after full depletion
Regular collects more charge again:
this already happens at 3 · 1014 neq/cm2

LD30/55 collect more charge than
Regular at low voltages:
simulations show lower E-field at sensor
top and stronger field in bulk
∆ lower trapping probability

no e�ect of stitching visible

Niels Sorgenfrei (ALU-Freiburg) Stitched Passive CMOS Strips 40th RD50 Workshop 9 / 12

Neutrons 5× 1014 neq/cm
2

Charge Collection: Long Sensor

irradiated up to 1 · 1015 neq/cm2

after beneficial annealing of 80 min at
60 °C
Regular still reaches ≥ 10 ke≠

LD30/55 significantly lower signal

no e�ect of stitching visible

Niels Sorgenfrei (ALU-Freiburg) Stitched Passive CMOS Strips 40th RD50 Workshop 10 / 12

Neutrons 1× 1015 neq/cm
2
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CV
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TB analysis, seed cuts

[F. Lex, DPG 2024]

Seed cuts are crucial
to take only the
signal and exclude
the noise

High irradiated
sensors have rather
bad seed cut
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Signal to noise ratio Nuclear Inst. and Methods in Physics Research, A 1064 (2024) 169407
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N. Davis et al.

Fig. 3. SNR distribution of the Regular design (red, solid), combined with the
corresponding hit detection efficiency (blue, crosses) for the unirradiated short strip
sensor. The SNR distribution comprises the Gaussian noise distribution and the Landau-
shaped signal distribution. The Gaussian noise peak is depicted partially as it is
significantly larger than the signal peak.

4.2. In-strip hit detection efficiency

Visualising the hit detection efficiency within one strip allows the
investigation of any structures along or across the strip, leading to po-
tential inefficiencies. In order to investigate if the technique of stitching
has any impact on the hit detection efficiency, the in-strip efficiency
is studied for all three designs. The corresponding distribution for the
fully depleted Regular and Low Dose 55 design of the unirradiated
sample is shown in Fig. 4, based on the folded statistics of available
strips for the analysis of each design (see [11] for the results concerning
the Low Dose 30 design). Overall, the Regular design is more efficient
than the Low Dose 55 design. The Low Dose 55 design shows a slight
decrease in efficiency across the strip towards the strip edge. Apart from
statistical fluctuations, however, the efficiency is distributed homoge-
neously along the strip for both designs. Therefore, the stitching does
not impact the efficiency of the sensor, as the stitching lines highlighted
in Fig. 2 do not show in the in-strip efficiency.

Fig. 5 shows the in-strip efficiency distribution for the Regular
and Low Dose 55 design of the irradiated sample to evaluate if the
same finding holds after irradiation. The irradiated sample is depleted
at 250V. Overall, the efficiency decreases after irradiation for both
designs. In particular, the Regular design shows a substantial decline in
efficiency towards the inter-strip region after irradiation. However, the
in-strip efficiency shows no sign of the stitching lines along the sensor.
In addition, no performance differences regarding the hit detection
efficiency have been observed between long and short strip samples
for the unirradiated and irradiated cases.

4.3. Simulation

Initial sensor simulations were performed to understand the per-
formance characteristics in the three sensor layouts. The electric field
simulated with TCAD is used as an input to the Allpix2 framework. That
allows for visualising the path and collection of the generated charge
carriers within the sensor thickness based on the electric field. Fig. 6
shows the corresponding line graphs for the Regular and Low Dose 55
designs. They are generated by simulating a Minimum Ionising Particle
(MIP) impinging on a strip from the top and ionising the sensor material
while travelling through the depleted sensor thickness. The blue lines
indicate the generated electrons’ drift path towards the collection elec-
trode at the top, located at integer values in Y . It is visible that there
is no substantial difference in the charge carrier propagation between
the regular and the Low Dose 55 design. Both designs show significant
charge collection by drift (indicated by straight lines). However, the
Regular design exhibits a stronger drift towards the collection electrode
between the strips than the Low Dose 55 design, due to a larger electric
field magnitude near the collection electrode for the Regular design.
The impact of the different electric field configurations on the various
sensor layouts and their final performance needs further investigation.

Fig. 4. In-strip efficiency of the Regular (top) and the Low Dose 55 (bottom) designs
of the unirradiated short strip sensor at a threshold of three. The mean efficiency along
the X- and Y -axis is shown. The stitching line across the sensor is located at Y = 0.

Fig. 5. In-strip efficiency of the Regular (top) and the Low Dose 55 (bottom) designs
of a neutron-irradiated long strip sensor at a threshold of three. The mean efficiency
along the X- and Y -axis is shown. The stitching line across the sensor is located at Y
= 0.

5. Conclusion

Stitched, passive CMOS strip sensors represent an alternative silicon
sensor concept that can be used for charged particle tracking. Two
samples with three sensor designs have been characterised in a test
beam environment. Overall, the Regular implant design shows the best
performance regarding hit detection efficiency. The efficiency is lower
for the Low Dose designs and declines after neutron-irradiation for all

[N. Davis et al., NIMA 1064 (2024) 169407]
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TCAD simulations
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What changes regarding microelectronic foundries?

Microelectronics photolitography

mask

photoresist
SiO2

Silicon wafer

ultraviolet light

photoresist
SiO2

Silicon wafer

photoresist
SiO2

Silicon wafer

CMOS photolitography

mask

photoresist
SiO2

Silicon wafer

ultraviolet light

photoresist
SiO2

Silicon wafer

photoresist
SiO2

Silicon wafer

lens

59 Passive CMOS strips 20/06/2024 Dortmund - Verbund CMOS meeting



Mask layout
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Stitching TCAD simulation doping profile - zoom with mesh
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Stitching TCAD simulation - E field 100V
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Stitching TCAD simulation - E field 100V
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Stitching TCAD simulation - E field 100V
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Stitching TCAD simulation - E field 100V
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Stitching distance 1 µm
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Stitching 1 µm: E field
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Stitching 150 nm
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Stitching 150 nm: E field
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Stitching 1 µm: E field
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Stitching 150 nm: E field
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