

Fachhochschule Dortmund University of Applied Sciences and Arts

universität-freiburg

Passive CMOS Strip: Results update

Marta Baselga, J-H Arling, Naomi Davis, I-M Gregor, Marc Hauser, Fabian Hügging, Michael Karagounis, Kevin Kröninger, Roland Kopenhöffer, Fabian Lex, Ulrich Parzefall, Birkan Sari, Simon Spannagel, Dennis Sperlich, Jens Weingarten, Iveta Zatocilova

Motivation

- All ATLAS and CMS upgrade strip detectors are fabricated in Hamamatsu Photonics HPK
- Seems like large area strips only are fabricated in microelectronics foundries
- Here we want to show that also CMOS foundries can fabricate strip detectors and do not have any impact in the performance

Passive CMOS Strip

- Fabrication in LFoundry with a 150 nm production
- NO electronics included \rightarrow therefore Passive
- FZ 150 µm thick wafer
- We fabricated 2.1 cm and 4.1 cm long strips:
 - 1. 1 cm^2 reticle used (2 set of masks used)
 - 2. The strips had to be stitched 3 or 5 times
- We want to demonstrate that stitching does not affect the performance of the strips

Passive CMOS strips 3

Passive CMOS strip detector

4 Passive CMOS strips

• Similar to the ATLAS strip design

Low dose design

Using low dose implant and a MIM capacitor

Testbeam results

Test Beam results

- Measurements at DESY, with ADENIUM Telescope (6 planes of Alpide sensors)
- Several TB campaigns
- Electron beam 4.2 GeV (might vary in each campaign)
- Readout with ALiBaVa system
- Cooling to $-45\,^\circ\text{C}$ (two possibilities: with dry ice and chiller + peltiers setup)
- CMS reference plane

dortmund

7 Passive CMOS strips

TB analysis, seed cuts

 Seed cuts are crucial to take only the signal and exclude the noise

• High irradiated sensors have rather bad seed cut

[F. Lex, DPG 2024]

Testbeam results, unirradiated sensors @100 V

In-hit hit efficiency

[N. Davis, DPG 2024]

- Good efficiency in the sensor
- No impact of the stitching

Testbeam in-strip hit efficiency, neutron irradiated

[F. Lex, DPG 2024]

- Neutron irradiated $3\times 10^{14}\,n_{eq}/cm^2$
- In strip efficiency starts to decrease in the interstrip region for the regular

Testbeam in-strip hit efficiency, neutron irradiated

[F. Lex, DPG 2024]

- Neutron irradiated $1\times 10^{16}\,n_{eq}/cm^2$
- Sensors not fully depleted, therefore the low efficiency
- In strip efficiency decreases in the interstrip region for the regular

Testbeam in-strip hit efficiency, proton (CERN) irradiated

[F. Lex, DPG 2024]

- Proton irradiated $1 \times 10^{15} \, n_{eq}/cm^2$
- Good efficiency after proton irradiation
- starts to loose efficiency between strips

Other lab results

Alpha measurements: Measurements taken with alpha + amplifier

Signal amplitude vs distance of alpha source

[M. Baselga et al., Vertex23]

TCAD simulations (Synopsys Sentaurus)

TCAD simulations

- Simulation of the interstrip capacitance also fits rather well with the measurements
- Simulation not from real values of the doping concentrations but approximation that fits rather well capacitance and current values

Interstrip Capacitance C_{int} @ 500 kHz

Capacitance values are means of measured/simulated values between $50\ \mathrm{V}$ and $80\ \mathrm{V}$

[I. Zatocilova, DPG 2024 and NIMA 1061 (2024) 169132]

17 Passive CMOS strips

• Regular & Low Dose 30: strong drift towards collection electrode

Allpix2 2024 workshop

Radiation Damage Models in TCAD

Surface effects oxide charge build- up interface trap states formation

LHCb/CERN Bulk Model

Perugia Bulk+Surface Model

Bulk effects deep level traps recombination centres creation

Introducing traps in silicon region Modifying recombination models

Bulk trap levels distribution in the Perugia model

20/06/2024 Dortmund - Verbund CMOS meeting

Leakage Current after Irradiation

Perugia Bulk+Surface Model

Normalization factor 0.25

CERN Bulk+Perguia Surface Model

Different stitching mismatch possibilities (Images for context, NOT TO SCALE)

Only separated stitching considered

21 Passive CMOS strips

$1\,\mu m$ stitching

- NOT REALISTIC
- Simulations for proving the concept, and simulating an extreme although not possible situation
- And, of course, for the fun \$

150 nm stitching

- Worst case scenario
- probably that is not what happens (I would expect something <5 nm)
- We don't know the alignment precision of the stepper motor from LFoundry, therefore 150 nm stitching is a value we know about the resolution

$2\,\mu m$ long regular design simulated

**** To be presented to iWoRiD24 ****

Stitching TCAD simulation doping profile - 2 µm long strip

Transient - Particle going through middle of the stitching (1 $\mu m)$ V=100 V

Holes density

Electrons density

Transient - Particle going through middle of the stitching gap 150 nm) V=100 V

Holes density

Electrons density

Stitching TCAD simulation - Charge comparison V=100 V

Stitched strips do not show any impact in the performance, neither measurements or simulations

- Low efficiency after irradiation between strips not fully understood yet
- Low dose designs do not show the performance as intended, but regular design is the most adequate
- Next submission only regular design

Contributions from last year

- iWoRiD23
- PSD
 - Proceedings: NIMA 1061 (2024) 169132
- RD50
- Hiroshima (HSTD13)
 - Proceedings: NIMA 1064 (2024) 169407
- VERTEX23
 - Proceedings: PoS(VERTEX2023)067
- TREDI24
- DPG2024
- DPG2024
- DPG2024
- TBBT24
- Allpix2 2024 workshop

- NIMA 1033 (2022) 166671
- NIMA 1039 (2022) 167031

Backup

last year results

Electrical characterization: IV

- Two different back processing:
 - 1. First had very often an early break down voltage when reaching the depletion the backplane
 - 2. Second had an improvement with the break down voltage

Electrical characterization: IV with nwell ring

- IV curve shows an improvement when biasing the bias and the nwell ring together
- Probably the break down is happening to the edge of the detector

Electrical characterization: CV

CV with the bias pad

$\ensuremath{\mathsf{CV}}$ with the bias pad and nwell ring

- Decrease of capacitance when increasing the frequency
- $\bullet\,$ The effect decreases biasing the nwell ring \rightarrow some edge effect
- 34 Passive CMOS strips

Lab Setup: Alibava board

- Readout is done with ALiBaVa system, it contains a mother board and a daughter board populated with two Beetle readout chip (from LHCb)
- It allows an analogue readout of the signal of 258 channels (two Beetle chips)

 Daughter board (with two beetle chips) bonded to the passive CMOS strips

Charge in the ALiBaVa setup: Long detector with Sr⁹⁰ source

• Sr⁹⁰ source located on top of 4 different positions (shown in right image)

- $\bullet\,$ The three different flavours have similar signal (expected \sim 11500 electrons)
- \bullet Low Dose 55 μm has higher noise \rightarrow it has higher inter strip capacitance

Transient Current Technique measurements

TCT and edge TCT with IR laser

Collected charge of the regular design of a long sensor as a function of the laser position at 50 V, illuminating from top [NIMA 1033 (2022) 166671]

Edge TCT charge from a short LD30 sensor at 100 V (fully depleted). Stitching does not change the collected charge [N. Sorgenfrei, 40th RD50, CERN]

Two Photon Absorption Transient Current Technique measurements

- TPA-TCT measurements were performed at CERN SSD
- The charge in stitching and outside stitching does not show any difference

- Measurements from Sebastian Pape, Michael Moll, Marcos Fernandez Garcia, and Esteban Curras. More details about this technique in this talk
- 38 Passive CMOS strips

We wanted to test the sensors under irradiation, we shipped samples to:

- 23 MeV protons @ KIT
- Neutrons at Ljubljana
- 24 GeV protons @ IRRAD (CERN)

Irradiated: IVs and CVs

20/06/2024 Dortmund - Verbund CMOS meeting

U technische universität dortmund

Irraidated with protons at KIT $5 \times 10^{14} \, n_{eq}/cm^2$ (23 MeV and annealed)

- Data not calibrated
- Regular design seems to stop working after irradiation
- 41 Passive CMOS strips

Irradiated: Charge in the ALiBaVa setup with Sr⁹⁰

Signal of a short detector with Sr⁹⁰ source irradiated

42 Passive CMOS strips

Electrical stress to some sensors

- Sensors irradiated at CERN we tried to reach the break down voltage (not reached at 800 V)
- Some burned damage was inflicted in the sensors (slide 6 shows a non burned edge detector)

Conclusions

- So far, stitching does not have any impact in the performance of the strip detectors before and after irradiation
- Currently wrapping up the irradiated measurements, finishing the testbeam analysis and studying if there is a problem with the burning detectors

Future work

- Planning a new production with the electronics implemented in the strips is ongoing \rightarrow that would allow to avoid all the bondings of the strips to the chips
- Production of a full wafer size strip detector with a CMOS foundry

Irradiated with 23 MeV protons

• some burned guard rings after some electrical stress

45 Passive CMOS strips

TCAD simulations: Simulated device

38th RD50 Workshop (On Line), June 2021

46 Passive CMOS strips

TCAD simulations: Simulated device zoom

38th RD50 Workshop (On Line), June 2021

TCAD simulations: Simulated Electric field at 100 V

38th RD50 Workshop (On Line), June 2021

TCAD simulations: Electric field zoom

Regular implant

Low dose 55 µm

Low dose 30 µm

49 Passive CMOS strips

TCAD simulation: Current voltage curve

TCAD simulation compared with data: capacitance voltage curves

38th RD50 Workshop (On Line), June 2021

TCAD simulation: Electric field 100 V at the center of the strip

Electric field in the center of the strip

38th RD50 Workshop (On Line), June 2021

TCAD simulation: Irradiated electric field

MIP particle going through center of the strip

Irradiated: Charge in the ALiBaVa setup with Sr⁹⁰

technische universität dortmund

TB analysis, seed cuts

 Seed cuts are crucial to take only the signal and exclude the noise

• High irradiated sensors have rather bad seed cut

[F. Lex, DPG 2024]

TCAD simulations

What changes regarding microelectronic foundries?

Mask layout

					10	24	20	10	1a	1.a	2a	24	1a					
				sp	3a	20	20	за	3 a	за	Sp	sp	38	Sp				
		1.0	20	28	18	2a	2a	18	sa	La	20	20	16	28	28	1a		
		38	10	20	aa	Яþ	Sp	3à	şa	8-8	20	20	36	ab	зb	за		
		1a	2a	2a	14	Zđ	20	10	38	1.a	2a	28	18	Za	Zđ	28		
	1.a	2a	2a	18	28	78	28	28	1.a	₽ā	za	za	28	1a	28	28	24	
10	3a	10	15	38	2b	2b	2b	2b	sa	TD	10	10	1b	38	3b	Sb	88	Sb
2a	14	2.8	26	20	20	28	28	24	10	24	2.8	2.0.	28	20	28	28	aa	24
1b	38	10	10	9a	30	зb	3D	зb	30	10	10	10	10	9a	зb	зb	30	ab
20	10	au	28	18	28	20	28	28	2.a	аs	#A	2a	28	1à	28	28	24	28
10	за	10	10	36	30	3D	80	sp	34	TD	10	10	1b	38	30	3b	88	sp
2a	14	24	26	44	20	2A	2a	za	10	24	2.8	2.0.	28	20	28	2a	18	29
1b	3a	10	10	0a	30	3D	3D	зb	30	10	10	10	10	9a	30	зb	30	Зb
2a	1a	2a	2a	18	28	29	28	28	La	ża	₽a	2a	2a	ia	28	28	24	24
	3 a	10	10	aa	10	1b	10	10	3a	10	10	10	1b	38	ib	10	88	
		10	10	aa	th	ab	tb	1b	3a	10	1.0	10	10	aa	ab	лb		
		10	10	9a	10	1b	10	ib	3a	10	10	10	10	98	зb	ab		
			ib	3a	ıb	10	10	2.0	за	ib	1ħ	ib	ib	3a	σt			
				1a	2a	28	2a	28	18	2a	20	2a	20	1a				
						зb	зb	3þ	зþ	30	30	30						

Stitching TCAD simulation doping profile - zoom with mesh

62 Passive CMOS strips

Stitching distance $1\,\mu\text{m}$

Stitching 1 µm: E field

Stitching 150 nm

Stitching 150 nm: E field

Stitching 1 µm: E field

Stitching 150 nm: E field

