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» Particle trajectory reconstruction (Tracking)
is a clustering problem

» Input: Set of points in 3D space (Hits)

» Output: Set of sets of points
each set corresponding to a single particle

» Total N. of hits > N. of hits in one track
— very challenging!

» Typical algorithm: Kalman Filter (KF)

» ©Physics performance is excellent
> ®Runtime scales badly with Ny

/

[1904.06778)
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https://arxiv.org/abs/1904.06778




Introduction: Kalman Filter, the “classical” approach

» Kalman Filtering: finding the “best fit" track
from a seed

» Combinatorial Kalman Filtering: Find ~ all
good track candidates
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What do we need most?

High track finding
efficiency

Correct determination

Precision of track parameters

Low number of
combinatoric fakes

Performance is stable
under realistic
conditions: alignment,
ageing, calibration

e Computing time,
memory usage

Credit: Christian Grefe

i
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Why ML?

» Important tradeoff between track-finding Efficiency, Fake rate, and Resource consumption
» Current ATLAS tracking pipeline clearly shows this:
» “Loose” track seeding stage to initialize KF-based track finding
» With enough starting seeds, KF finds most particles of interest ...
» . .along with lots of fake tracks ...
» . .which necessitates an ambiguity resolution stage.
» All of this compounds into high resource consumption!
» Important: It's not only a computational issue!

» Keeping the combinatorics in control require setting “fiducial cuts” on particles to reconstruct
» E.g. pT threshold, Impact parameter ranges, N. of Si hits, ...
» More computationally efficient algorithms are needed!

» Better use of constrained resources
» Allow widening the space of tracks we attempt to reconstruct

v

ML solutions are obvious candidates!
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I. Track finding with graph neural networks






» Simplest possible GNN (source: distill.pub)
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https://distill.pub/2021/gnn-intro/

What is a graph neural network (GNN)?

» Can model arbitrarily complex relationships . .. » .. .or slightly simpler ones!

s

<
yavd

&
|

Edge block Node block Global block Edge block Node block Global block

source: [1806.01261]
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https://arxiv.org/pdf/1806.01261

» Graph neural networks model relationships between adjacent nodes
» Stacking (or iterating) many G, — Gu41 blocks allows information to diffuse through network
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source: [1806.01261]
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https://arxiv.org/pdf/1806.01261

Graphs for particle tracks

ATLAS GNN4ITk

Our graph definition

Hits Graph

credit: Heberth Torres, CTD23
» GNN4ITk: R&D project within ATLAS tracking group
> Vertices: 3-D “space-points” (aka “Hits")
» Edges: Probability that any two space-points are originating from same particle
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https://indico.cern.ch/event/1252748/timetable/?view=standard#18-physics-performance-of-the
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» As in “classical” case, pipeline has multiple steps

1. Need intelligent graph-building stage: too many hits to enumerate all possible connections!
2. GNN does the edge-scoring task
3. Create actual tracks with simple graph-walking algorithm
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» First approach: The Module Map
» In a nutshell:

» Using a simulated sample, enumerate triplets of hits from single particles
» If triplet pass certain kinematic requirements: record connection between modules
» When constructing the graph: only allow connections found in module map

R [mm]

Connections added:
1->2->3
2->3->4
3->4->5
4->5->6

credit: Minh-Tuan Pham

» Approach is “brute-force”-like, but only need to create the map once!
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https://indico.fnal.gov/event/61746/contributions/280532/

Step 1: Graph construction

» Second approach: Metric Learning

» Metric space = Set with a definition of distance between its elements

» E.g. euclidian space, (aka “physical” space)

» Can train ML model to learn new metrics by minimizing a suitable distance definition
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credit: [1805.05510]
» Application to graph construction: Only allow edges if distance in learned space is small

Physical space Learned latent space

o
.
.
Circle of radius r
credit: Heberth Torres, CTD23

» Can metric learning be used to perform the track finding stage itself? More on that later! 15/%


https://arxiv.org/abs/1805.05510
https://indico.cern.ch/event/1252748/timetable/?view=standard#18-physics-performance-of-the

Step 1: Graph construction: Module map vs metric learning

» Metric learning underperforms at higher pT It could also be a statistics issue:

» Higher pT = straighter tracks exponentially less tracks at high pT!
» ... Metric gets harder to learn?
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» GNN4ITk currently use module map approach
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MLP
Input graph
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Learn geometric pattern of tracks
(from DeepMind)

» Interaction network paper

Transforms the latent features
of each edge into a classification
score for each edge

credit: Charline Rougier, CTD22
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https://indico.cern.ch/event/1103637/contributions/4821831/
https://arxiv.org/abs/1612.00222

ArArdl:
e

No further fitering:
track candidate is built

» Form tracks in 2 steps:

1. Find connections with loose cut ~
2. Find paths with tighter cut

No further filtering: )
the track candidate is built killed
& o // y X

credit: Charline Rougier, CTD22

18/30


https://indico.cern.ch/event/1103637/contributions/4821831/

Putting it all together: Tracking efficiency

Efficiency
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» Performance approaching that of Kalman Filter-based pipeline

» But still falls a few percent short: why?
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BeO facings (far side)
Hybrid assembly

Slotted washer

Silicon sensors Datum washer Connector
BeO facings (cooling side)

credit: Heberth Torres, CTD23
» Strip space-points are created from stereo-pair of 1-D measurements:
Precision is less than for pixel space-points!
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https://indico.cern.ch/event/1252748/timetable/?view=standard#18-physics-performance-of-the

Putting it all together: Track content
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Hybrid models?

Idea

* GNN:

- Resolve combinatorics with high resolution
spacepoints in pixels

- Use ordinary KF here
* CKF
- Completes tracks in strips
* Benefits of combination:
- High quality seeds without duplicates for CKF

- Use CKF in region with lower density (- less
branching)

- CKF can e.g. use single strip measurements
- Smaller graph (pixel only) LFull GNN pixel seeding + CKF*

TN

ING
4“ )}\

Xeh
)

credit: Benjamin Huth, CTD23
» Project within ACTS to combine GNN & KF pipelines
» Sill in early WIP status!
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https://indico.cern.ch/event/1252748/contributions/5521546/

Il. Track finding with metric learning



Learnt latent space

Hits already clustered by particle;

Clusters can be collected trivially
Point cloud

Repulsion & attraction [
’ L4 [ of points in latent space

Condensation point
Represents the track, can learn
track parameters like pT (WIP)

credit: Kilian Lieret, CHEP23
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https://indico.jlab.org/event/459/contributions/11741/

» More formally:

= We want a minimum in the loss when all hits x; € T,, have U(x;) inside neighbourhood V' (7(x;)) for at least one
influencer, and only one influencer

RM *
o @ @ N(1(x)) *
o UCx;), I(x;) *
.
T.‘ N=5 i *
ar V= In this case, 4 out of 5 users
are in the neighbourhood

£ an inf @ Position of user-embeddings
of an influencer * Position of influencer-embeddings

credit: Daniel Murnane, CTD23

» Technical details: [2002.03605]
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https://indico.cern.ch/event/1252748/timetable/?view=standard#47-track-finding-and-fitting-w
https://arxiv.org/pdf/2002.03605

Object condensation: Our current pipeline

STAGE 1: EC -> Working on replacing this with dynamic edge creation “Point cloud network”
¢/~ Graph construction based on E NN
geometric cuts ce EC score Orphan node
threshold mask
L L] ®
[ ]
Loss fct = focal loss for
\ pt>0.9 hits
STAGE 2: OC STAGE 3: Collect clusters

DBSCAN

All three stages have their
own hyperparameters

* Can be trained/optimized
separately (fixing the previous
stage)

credit: Kilian Lieret, CHEP23

» Instead of Metric learning for graph building to be passed to GNN ...
— Build graph with GNN then implement metric learning!
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https://indico.jlab.org/event/459/contributions/11741/

Hybrid models? Approximate Nearest Neighbor Search

» Learn a suitable metric space

» Segment it in different regions, in O(log Nhits)

source

Quickly lookup union of regions being
approximately closest to a query point

Perform “classical” track finding in each region
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https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html

Approximate Nearest Neighbor Search: Divide-and-conquer

» This is much easier. ..

ATLAS Simulation Preliminary
ITk layout - Tracks in buckets

» ... Than this!

M LAS K

» Allows “easy” parallelisation over regions!
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» Today we've seen:

Elements of “classical” tracking pipelines

Why is there intense R&D to replace or ameliorate them
The GNN approach

The metric learning approach

And hybrid methods!

» This is just a small fraction of the landscape!

YyYVYYVYY

» Tracking is a great playground for ML due to non-standard nature of the problem
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Merci!



