Machine Learning for Track Reconstruction at the LHC

Louis-Guillaume Gagnon (UC Berkeley)

CoDaS-HEP 2024 2024/07/26

Introduction: Particle Trajectory Reconstruction

- ► Particle trajectory reconstruction (Tracking) is a **clustering** problem
- ► Input: Set of points in 3D space (Hits)
- Output: Set of sets of points each set corresponding to a single particle
- ► Total N. of hits ≫ N. of hits in one track ⇒ very challenging!
- ► Typical algorithm: Kalman Filter (KF)
 - ► ©Physics performance is excellent
 - ▶ ©Runtime scales badly with N_{hits}

[1904.06778]

Introduction: Track Reconstruction Stages

Introduction: Kalman Filter, the "classical" approach

► Kalman Filtering: finding the "best fit" track from a seed

▶ Combinatorial Kalman Filtering: Find \approx all good track candidates

What do we need most?

- High track finding efficiency
- Low number of combinatoric fakes

 Performance is stable under realistic conditions: alignment, ageing, calibration

Correct determination of track parameters

 Computing time, memory usage

Credit: Christian Grefe 5/30

Why ML?

- Important tradeoff between track-finding Efficiency, Fake rate, and Resource consumption
- Current ATLAS tracking pipeline clearly shows this:
 - "Loose" track seeding stage to initialize KF-based track finding
 - ▶ With enough starting seeds, KF finds most particles of interest . . .
 - ...along with lots of fake tracks ...
 - ... which necessitates an ambiguity resolution stage.
- ▶ All of this compounds into high resource consumption!
- ▶ Important: It's not only a computational issue!
 - Keeping the combinatorics in control require setting "fiducial cuts" on particles to reconstruct
 - ► E.g. pT threshold, Impact parameter ranges, N. of Si hits, ...
- ► More computationally efficient algorithms are needed!
 - ► Better use of constrained resources
 - ▶ Allow widening the space of tracks we attempt to reconstruct
- ► ML solutions are obvious candidates!

I. Track finding with graph neural networks

What is a graph?

Graph (U), Edges (E), Vertices (V)

What is a graph neural network (GNN)?

► Simplest possible GNN (source: distill.pub)

What is a graph neural network (GNN)?

► Can model arbitrarily complex relationships . . .

▶ ... or slightly simpler ones!

source: [1806.01261]

"Message passing"

- ► Graph neural networks model relationships between *adjacent* nodes
- ▶ Stacking (or iterating) many $G_n \rightarrow G_{n+1}$ blocks allows information to diffuse through network

source: [1806.01261]

ATLAS GNN4ITk

Our graph definition

Graph

credit: Heberth Torres, CTD23

- ► GNN4ITk: R&D project within ATLAS tracking group
- ► Vertices: 3-D "space-points" (aka "Hits")
- ▶ Edges: Probability that any two space-points are originating from same particle

GNN-based tracking pipeline

- ► As in "classical" case, pipeline has multiple steps
 - 1. Need intelligent graph-building stage: too many hits to enumerate all possible connections!
 - $2.\,$ GNN does the edge-scoring task
 - 3. Create actual tracks with simple graph-walking algorithm

Step 1: Graph construction

- ► First approach: The *Module Map*
- ► In a nutshell:
 - ▶ Using a simulated sample, enumerate triplets of hits from single particles
 - ▶ If triplet pass certain kinematic requirements: record connection between modules
 - ▶ When constructing the graph: only allow connections found in module map

credit: Minh-Tuan Pham

▶ Approach is "brute-force"-like, but only need to create the map once!

Step 1: Graph construction

- ► Second approach: *Metric Learning*
- lacktriangle Metric space \equiv Set with a definition of distance between its elements
- ► E.g. euclidian space, (aka "physical" space)
- ▶ Can train ML model to learn new metrics by minimizing a suitable distance definition

credit: [1805.05510]

▶ Application to graph construction: Only allow edges if distance in learned space is small

credit: Heberth Torres, CTD23

▶ Can metric learning be used to perform the track finding stage itself? More on that later!

Step 1: Graph construction: Module map vs metric learning

- ► Metric learning underperforms at higher *pT*
- ▶ Higher $pT \implies$ straighter tracks
- ... Metric gets harder to learn?

► GNN4ITk currently use module map approach

► It could also be a statistics issue: exponentially less tracks at high pT!

Step 2: Edge labeling

credit: Charline Rougier, CTD22

► Interaction network paper

Step 3: Graph segmentation

- ► Form tracks in 2 steps:
 - 1. Find connections with loose cut
 - 2. Find paths with tighter cut

credit: Charline Rougier, CTD22

Putting it all together: Tracking efficiency

- ▶ Performance approaching that of Kalman Filter-based pipeline
- ► But still falls a few percent short: why?

A word on strip space-points

credit: Heberth Torres, CTD23

► Strip space-points are created from stereo-pair of 1-D measurements: Precision is less than for pixel space-points!

Putting it all together: Track content

- ► Part of the answer: missing strip measurements?
- **b** Behavior aligns well with the η plot as well!
- ► Currently under investigation

Idea

· GNN:

- Resolve combinatorics with high resolution spacepoints in pixels
- Use ordinary KF here

CKF

Completes tracks in strips

Benefits of combination:

- High quality seeds without duplicates for CKF
- Use CKF in region with lower density (→ less branching)
- CKF can e.g. use single strip measurements
- Smaller graph (pixel only)

"Full GNN pixel seeding + CKF"

credit: Benjamin Huth, CTD23

- ▶ Project within ACTS to combine GNN & KF pipelines
- ► Sill in early WIP status!

II. Track finding with metric learning

Tracking with metric learning: Object Condensation

credit: Kilian Lieret, CHEP23

Tracking with metric learning: Object Condensation

► More formally:

• We want a minimum in the loss when *all* hits $x_i \in T_a$ have $\mathcal{U}(x_i)$ inside neighbourhood $\mathcal{N}\big(\mathcal{I}(x_i)\big)$ for **at least one** influencer, and *only* one influencer

- Position of user-embeddings
- ★ Position of influencer-embeddings

credit: Daniel Murnane, CTD23

► Technical details: [2002.03605]

Tracking with metric learning: Object Condensation Tracking Pipeline

Object condensation: Our current pipeline

credit: Kilian Lieret, CHEP23

- ▶ Instead of Metric learning for graph building to be passed to GNN . . .
 - ⇒ Build graph with GNN then implement metric learning!

Hybrid models? Approximate Nearest Neighbor Search

- ► Learn a suitable metric space
- ▶ Segment it in different regions, in $\mathcal{O}(\log N_{\text{hits}})$

- Quickly lookup union of regions being approximately closest to a query point
- ► Perform "classical" track finding in each region

sourc

Approximate Nearest Neighbor Search: Divide-and-conquer

► This is much easier...

▶ ... Than this!

► Allows "easy" parallelisation over regions!

Conclusion

- ► Today we've seen:
 - ► Elements of "classical" tracking pipelines
 - ▶ Why is there intense R&D to replace or ameliorate them
 - ► The GNN approach
 - ► The metric learning approach
 - ► And hybrid methods!
- ► This is just a small fraction of the landscape!
- ▶ Tracking is a great playground for ML due to non-standard nature of the problem

Merci!