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Vector Parallelism: Motivation

• CPUs are no faster in GHz than they were 15 years ago
– Power limits! Faster clock makes them too hot, inefficient

• Yet process improvements keep making CPUs denser
– Moore’s Law! Add 2x more “stuff” every 18–24 months

• One way to use extra transistors: more cores
– Dual-core Intel chips arrived in 2005; counts keep growing
– Up to 64 in Intel Xeon “Emerald Rapids”, 192 in AMD EPYC

• Another solution: SIMD or vector operations
– First appeared on Intel Pentium with MMX in 1996
– Vectors have ballooned: 512 bits (16 floats) in Intel Xeon
– Can vectorization increase speed by an order of magnitude?
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Die shot of 28-core Intel Skylake-SP
Source: wikichip.org



Three Ways to Look at Vectorization

1. Hardware Perspective: Run vector instructions 
involving special registers and functional units 
that allow in-core parallelism for operations on 
arrays (vectors) of data.

2. Compiler Perspective: Determine how and when 
it is possible to express computations in terms of 
vector instructions.

3. Programmer Perspective: Write code with SIMD 
in mind; e.g., in a way that allows the compiler 
to deduce that vectorization is possible.
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Hardware Perspective

• SIMD = Single Instruction, Multiple Data
– Part of commodity CPUs (x86, x64, PowerPC) since late ’90s

• Goal: parallelize computations on vector arrays
– Line up operands, execute one op on all simultaneously

• SIMD instructions have gotten speedier over time
– Initially: several cycles for execution on small vectors
– Intel AVX introduced pipelining of some SIMD instructions
– Now: multiply-and-add large vectors on every cycle

• Intel’s line: Cascade Lake, Sapphire/Emerald Rapids…
– 2 VPUs (vector processing units) available per core
– 2 ops/VPU if they do FMAs (Fused Multiply-Add) every cycle
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Evolution of Vector Registers, Instructions

• A core has 16 (SSE, AVX) or 32 (AVX-512) vector registers
• In each cycle, VPUs can access registers, do FMAs (e.g.)
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Peak Flop/s, and Why It’s Basically a Fiction

• Peak flop/s (FLoating-point OPs per second) is amplified 2x by vector FMAs
• Example with floats on Intel Xeon Gold 6130 “Skylake-SP” @ 2.1 GHz

– (2 x 16 flop/VPU) x (2 VPUs/core) x (16 cores) x 2.1 GHz = 2150 Gflop/s  (really?)
• Dubious assumption #1: no slow operations like division or square root

– Peak rate assumes exactly 1 add and 1 multiply (= 2 flops) per VPU per cycle
• Dubious assumption #2: data are loaded and stored with no delay

– Implies heavy reuse of data in vector registers, perfect prefetching into L1 cache
• Dubious assumption #3: clock rate is fixed

– In reality: if all cores are active, Xeon will slow AVX-512 slightly to prevent overheating
• Dubious assumption #4: every instruction in the code is vectorized

– In reality: serial fraction of work S limits the factor in blue to 1/S (Amdahl’s Law)
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A Quick Word on Amdahl’s Law

7

• SIMD means parallel, so Amdahl’s Law is in effect!
– Linear speedup is possible only for perfectly parallel code
– Amdahl’s asymptote of the speedup curve is 1/(serial fraction)
– Speedup of 16x is unattainable even if 99% of work is vector



Instructions Must Do More Than Just Flops…

• Data Access: Load/Store, Pack/Unpack, Gather/Scatter
• Data Prefetch: Fetch, but don’t load into a register
• Vector Rearrangement: Shuffle, Bcast, Shift, Convert
• Vector Initialization: Random, Set
• Logic: Compare, AND, OR, etc.
• Math: Arithmetic, Trigonometry, Cryptography, etc.
• Variants of the Above… Mask, Swizzle, Implicit Load…

– Combine an operation with data selection or movement

• This is why AVX-512 comprises over 4000 instructions
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Extension ICX SKX KNL

AVX512F
Foundation X X X

AVX512CD
Conflict Det. X X X

AVX512BW
Byte & Word X X

AVX512DQ
Dble. & Quad. X X

AVX512VL
Vector Length X X

AVX512PF
Prefetch X

AVX512ER
Exp. & Recip. X

AVX512VNNI
Neural Net. X

AVX512…etc.
ICX additions X



How Do We Get Vector Speedup?

• Program the key routines in assembly…
– Ultimate performance potential, but only for the brave

• Program the key routines using SIMD intrinsics...
– Step up from assembly; useful in spots, but risky

ü Link to an optimized high-level library
– Intel MKL, e.g., written by people who know all the tricks
– BLAS is the portable interface for doing fast linear algebra

ü Let the compiler find vectorizable loops and calls!
– Compiler may need some guidance through directives
– Programmer can help by using simple loops and arrays
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Compiler Perspective

• Vectorization is essentially loop unrolling
– In effect, the compiler unrolls by 4 iterations, if 4 elements fit in a vector register

for (i=0; i<N; i++) {
 c[i]=a[i]+b[i];
}

for (i=0; i<N; i+=4) {
 c[i+0]=a[i+0]+b[i+0];
 c[i+1]=a[i+1]+b[i+1];
 c[i+2]=a[i+2]+b[i+2];
 c[i+3]=a[i+3]+b[i+3];
}

Load a(i..i+3)
Load b(i..i+3)
Do 4-wide a+b->c
Store c(i..i+3)
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Basic requirements of vectorizable loops

• All loop iterations must be independent of each other
• Number of iterations is known on entry

– No conditional termination (“break” statements, while-loops)

• Single control flow; no “if” or “switch” statements
– But: the compiler may be able to convert “if” to a masked vector assignment!

• Must be the innermost loop, if nested
– But: the compiler may be able to reorder loops as an optimization!

• No function calls but basic math: pow(), sqrt(), sin(), etc.
– But: the compiler may be able to inline user functions as an optimization!
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Compiler Options and Optimization

• GCC and Clang will vectorize with  -O2  or  -ftree-vectorize
– Check defaults:  echo | gcc-14 -v -dM -E - 2>&1 | egrep "SSE|AVX|NEON|OPT"
– Usual default: SSE for x86_64, NEON for Apple Silicon (128 bits like SSE, nothing bigger)
– To tune vectors and instructions to the host machine:  -march=native
– To ensure AVX-512 (x86_64 only):  -mprefer-vector-width=512 

– To optimize across objects (e.g., to inline functions):  -flto
– Note, GCC 11 or prior will vectorize only with  -O3  or  -ftree-vectorize

• Intel Classic Compilers—now discontinued—will vectorize with -O2
– To tune vectors and instructions to the host machine (usual default is SSE):  -xHost
– To ensure AVX-512 (x86_64 only):  -qopt-zmm-usage=high
– To optimize across objects (e.g., to inline functions):  -ipo
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Architecture-Specific Compiler Options

• GCC compilers (+ LLVM-based, like Clang, Intel oneAPI,…)
– Specify instruction subset with  –m , architecture with  -march , exact cpu with  -mcpu
– Processor tuning is implied by  -mcpu  and  -march  (except, e.g.,  -march=x86-64-v2)
– To get AVX2 vectors, use  -mavx2 -mfma  (won’t get FMAs without  -mfma)
– To get AVX2 vectors and FMAs plus tuning, use  -march=haswell
– GCC 4.9+ has a variety of specific  -m  options for AVX-512 extensions
– GCC 5.3+ has  -march=skylake-avx512 , 9.1+ has  -march=cascadelake  …and so on
– GCC 8.1+ has  -march=icelake-server  (Intel released ICX late)

• Intel Classic compilers: most GCC options work, plus…
– Use  -xCORE-AVX2  or  -xHASWELL  to compile for AVX2
– For SKL-SP and later:  -xCORE-AVX512
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Example Code that Does 2 Billion FMAs
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int main(int argc, char *argv[]) {

    /* Declare arrays small enough to stay in L1 cache.
       Assume the compiler aligns them correctly. */
    double a[ARRAY_SIZE], b[ARRAY_SIZE], c[ARRAY_SIZE];
    int i, t, rc;
    double m = 1.5, w1, w2, d = 0.0;
    char modelname[80];

    /* Initialize a, b and c arrays */
    for (i=0; i < ARRAY_SIZE; i++) {
        a[i] = 0.0; b[i] = i*1.0e-9; c[i] = i*0.5e-9;
    }

    /* Perform operations with arrays many, many times */
    w1 = dtime();
    for (t=0; t < NUMBER_OF_TRIALS; t++) {
        for (i=0; i < ARRAY_SIZE; i++) {
            a[i] += m*(m*b[i] + c[i]);
        }
    }
    w2 = dtime();

    /* Print total time and processor type used in the run.
       Print a result so array ops aren't optimized away. */
    for (i=0; i < ARRAY_SIZE; i++) d += a[i];
    printf("d = %f   time = %f\n", d, w2 - w1);
    rc = get_model_name(modelname);
    if (rc == 0) printf("%s", modelname);
}

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#define ARRAY_SIZE 1024
#define NUMBER_OF_TRIALS 1000000

double dtime() {
    double tseconds = 0.0;
    struct timeval my_t;
    gettimeofday(&my_t, NULL);
    tseconds = (double)(my_t.tv_sec + my_t.tv_usec * 1.0e-6);
    return (tseconds);
}

int get_model_name(char *mname) {
    FILE *fp;
    fp = fopen("/proc/cpuinfo", "r");
    if (fp == NULL) {
        strcpy(mname, "(/proc/cpuinfo is not readable)\n");
        return(1);
    }
    /* model name should be on the fifth line */
    for (int i=0; i < 5; i++) fgets(mname, 80, fp);
    fclose(fp);
    return(0);
}



Exercise 1

• The code on the preceding slide is available at this link:
– https://godbolt.org/z/z5jecaae8

• This takes you to the Compiler Explorer website, a great resource that lets you 
try lots of compilers and their options and view assembler output
– DEMO showing how different compiler flags affect vectorization
– You can execute code on the site, too, but it’s not great for benchmarking

• Exercise: benchmark the code from the the link above, or the preceding slide
– To work on your laptop: save or copy-paste the code into a file named abc_fma.c
– If you work directly on the website, note that the processor may vary run-to-run

• The next two slides guide you through a series of compile-and-run steps to 
show the performance effects of enabling optimization and vectorization
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Exercise 1 (cont’d.)

1. Invoke your compiler with no special flags and time a run:

2. Repeat this process for the following sets of options:

– Here are the current lists of architectures that GCC knows about for x86 and for ARM
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gcc-14 abc_fma.c -o abc_fma
./abc_fma

gcc-14 -march=native abc_fma.c -o abc_fma
gcc-14 -O2 abc_fma.c -o abc_fma
gcc-14 -O2 -march=native abc_fma.c -o abc_fma
gcc-14 -O2 -fno-tree-vectorize abc_fma.c -o abc_fma
gcc-14 -O3 abc_fma.c -o abc_fma
gcc-14 -O3 -march=native abc_fma.c -o abc_fma
gcc-14 -O3 -march=??? abc_fma.c -o abc_fma  #take a guess

https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html
https://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html


Exercise 1 (still cont’d.)

3. Your best result should be from -O2 -march=native. Why?
– Other choices may perform slightly better or worse
– Note, -O3  isn’t guaranteed to be better

4. Do you get the expected speedup factors from vectorization?
– NEON (Apple Silicon) or SSE registers hold 2 doubles; AVX registers hold 4 doubles 
– Recent laptops should be able to do NEON or AVX (but not AVX-512)

5. Other things to note:
– On x86_64, not specifying an architecture at -O2 is equivalent to -msse3
– Optimization -O2  is further degraded by -fno-tree-vectorize 
– Why disable or downsize vectors? To gauge their benefit!
– With Intel’s icc, vectorization is disabled by -no-vec (after -O2 or -O3) 
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Why Not Use an Optimized Library?

• Optimized libraries like 
OpenBLAS may not have the 
exact function you need

• The kernel of abc_fma.c looks 
like a DAXPY, or (aX + Y) with 
doubles… but it isn’t quite…

• The inner loop must be 
replaced by two DAXPY calls, 
not one, and with function 
overhead, the resulting code 
runs several times slower
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for (t=0; t < NUMBER_OF_TRIALS; t++) {
    for (i=0; i < ARRAY_SIZE; i++) {
        a[i] += m*(m*b[i] + c[i]);
    }
}

for (t=0; t < NUMBER_OF_TRIALS; t++) {
    cblas_daxpy(ARRAY_SIZE, m*m, b, 1, a, 1);
    cblas_daxpy(ARRAY_SIZE, m, c, 1, a, 1);
}



Programmer Perspective

• Programmer’s goal is to supply code that runs well on hardware
• Thus, you need to start with the hardware perspective

– Think about how instructions will run on vector hardware
– Try also to combine additions with multiplications
– Furthermore, try to reuse everything you bring into cache!

• And you need to add the compiler perspective 
– Look at the code like the compiler looks at it
– At a minimum, set the right compiler options!
– But you also have to consider how to lower barriers for the compiler…
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Challenge: Loop Dependencies

• Vectorization changes the order of computation from sequential order
– Groups of computations now happen simultaneously

• Compiler must be able to prove that vectorization yields correct results
• The key: “unrolled” loop iterations must be independent of each other

– Wider vectors means that bigger groups of iterations must be independent
– Not everything that looks like a dependency truly is one

• Compiler must perform a dependency analysis prior to vectorizing
– It must make conservative assumptions about dependencies
– You can give guidance by inserting compiler directives and keywords
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Loop Dependencies: Read After Write

Consider adding the following vectors in a loop, N=5:
a = {0,1,2,3,4}
b = {5,6,7,8,9}

Applying each operation sequentially:
a[1] = a[0] + b[1]  →  a[1] = 0 + 6    →  a[1] = 6
a[2] = a[1] + b[2]  →  a[2] = 6 + 7    →  a[2] = 13
a[3] = a[2] + b[3]  →  a[3] = 13 + 8  →  a[3] = 21
a[4] = a[3] + b[4]  →  a[4] = 21 + 9  →  a[4] = 30

a = {0, 6, 13, 21, 30}

for(i=1; i<N; i++) 
  a[i] = a[i-1] + b[i];
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Loop Dependencies: Read After Write

Now let’s try vector operations:
a = {0,1,2,3,4}
b = {5,6,7,8,9}

Applying vector operations, i={1,2,3,4}:
a[i-1] = {0,1,2,3}   (load)
b[i]    = {6,7,8,9}   (load)
{0,1,2,3} + {6,7,8,9} = {6, 8, 10, 12}  (operate)
a[i] = {6, 8, 10, 12}   (store)

a = {0, 6, 8, 10, 12} ≠ {0, 6, 13, 21, 30}    NOT VECTORIZABLE

for(i=1; i<N; i++) 
  a[i] = a[i-1] + b[i];
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Dependencies and Optimization Reports

• Loop-carried dependencies are a common reason for non-vectorization
• Optimization reports say where the compiler found dependencies

– Choose a report level with info about places where vectorization was missed

• Remember, the compiler is conservative about dependencies
– Dig into the details, see if the claimed dependencies really exist in the code
– The Intel compiler is generally better than GCC for this because it is more concise

• Even with no dependencies, vectorization is not guaranteed!
– Compiler may fail to vectorize a loop if it has complicated indexing
– Compiler may decline to vectorize a loop if no performance gain is projected
– Reports give information about these situations too
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Exercise 2

Let’s examine optimization reports for the abc_fma.c code from Exercise 1.
1. Recompile the code with -O2, along with optimization reporting from the 

vectorizer: -fopt-info-vec
– Confirm that the inner loops were vectorized as expected

2. Repeat (1), but with vectorization disabled: -fno-tree-vectorize
– Do you get any output at all?

3. Repeat (1), but instead of disabling, add: -fopt-info-vec-missed 
– This reports on the loops that missed out on vectorization
– Considering that the main loops ultimately vectorized, you may find that gcc gives way 

too much information here…
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Exercise 2 (cont’d.)

4. Make a copy of abc_fma.c called abc_fma_shift.c. Edit it and change the 
innermost of the nested loops to look like this:

5. The above loop has no dependencies. (Why not?) Compile the code with 
vectorization enabled, and request info on loops that missed out:

6. Did gcc vectorize the loop? Look for any “missed” remarks directed at the 
loop on line abc_fma_shift.c:46 – or grep for “complicated access pattern”

for (i=0; i < ARRAY_SIZE-1; i++) {
    a[i+1] += m*(m*b[i] + c[i]);
}

gcc-14 -O2 abc_fma_shift.c -o abc_fma_shift -fopt-info-vec-missed
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Compiler Directives for Vectorization

• Sometimes, it is impossible for the compiler to prove that there is no data 
dependency, even if there isn’t one
– e.g., unknown loop index offset, complicated use of pointers

• In this case, you can give it the IVDEP (Ignore Vector DEPendencies) hint
– It assures the compiler, “It’s safe to assume no dependencies”
– Compiler may still choose not to vectorize based on cost
– Example: assume we know M > vector width in doubles...

void vec1(double s1, int M, int N, double *x) {
#pragma GCC ivdep     // for Intel, omit GCC
  for(i=M; i<N; i++) x[i] = x[i-M] + s1;
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OpenMP 4.0 and Vectorization

• OpenMP 4.0 directive: #pragma omp simd
– Motivates the compiler to try harder to vectorize a particular loop
– Can be refined with its own set of OpenMP clauses
– Is enabled by the special compiler option -fopenmp-simd  (Intel: -qopenmp-simd)
– Can be combined with other OpenMP constructs; use -fopenmp  (Intel: -qopenmp)
– To vectorize the multithreaded example below, GCC needs “simd”, Intel doesn’t

#pragma omp for simd private(x) reduction(+:sum)
for (j=1; j<=num_steps; j++) {
 x = (j-0.5)*step;
  sum = sum + 4.0/(1.0+x*x);
}
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Challenge: Pointer Aliasing

• In C, pointers can hide data dependencies!
– The memory regions that they point to may overlap… Is this vectorizable? 

– …not if we give it the arguments compute(a,a-1,c)
– In effect, b[i] is really a[i-1] → Read After Write dependency

• Compilers can usually cope, at some cost to performance

void compute(double *a, double *b, double *c) {
    for (i=1; i<N; i++) {
        a[i] = b[i] + c[i];
    }
}
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Getting Past Pointer Aliasing

• C99 introduced the “restrict” keyword to the C language
– Instructs compiler to assume addresses will not overlap, ever

• Intel’s icc may need extra flags: -restrict -std=c99

void compute(double * restrict a, double * restrict b, double * restrict c) {
    for (i=0; i<N; i++) {
        a[i] = b[i] + c[i];
    }
}
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Memory Performance and Vectorization

• We have mostly been focusing on faster flop/s, but flop/s don’t happen unless 
data are present
– Moving data from memory is often the rate-limiting step!

• Data (including scalar data + neighbors) travel between RAM and caches in 
groups called “cache lines” that are the exact same size as vectors

• But wait… if data movement is “vectorized”, just like adds and multiplies are 
vectorized, then everything is getting the same speedup, right?
– Um, no. The data rate for RAM is slow, even if it is always “vectorized” in a sense
– Well… loads from L1 cache to registers, and stores from registers to L1, do get 

vectorized. But that’s just the final short step if the data start way out in RAM
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Laptop Vector Utilization as a Function of Array Size

Loop overhead

Division – cache does not matter

?

Vector too small

L1 drop off, 32KB

L2 drop off, 256KB

L3 drop off (6MB), too soon?
Output matters, too!

“mtorture” code by Matevž Tadel, UCSD
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Cache and Alignment

• Optimal vectorization takes you beyond the SIMD unit!
– Cache lines start on 16-, 32-, or 64-byte boundaries in memory
– Sequential, aligned access is much faster than random/strided
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Strided Access

• Fastest usage pattern is “unit stride”: perfectly sequential
– Cache lines arrive in L1d as full, ready-to-load vectors

• To create unit-stride accesses:
– Store data in structs of arrays (SoA), rather than arrays of structs
– Loop through arrays so their “fast” dimension is innermost
– C/C++ is fastest on the last index; Fortran is fastest on the first

do j=1,n
   do i=1,n
      a(i,j)=b(i,j)*s
   end do
end do

for(j=0;j<n;j++) {
   for(i=0;i<n;i++) {
      a[j][i]=b[j][i]*s;
   }
}
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Penalty for Strided Access

• Striding through memory 
reduces effective memory 
bandwidth!
– Roughly by 1/(stride)

• Why? For large stride s, data 
must be “gathered” from s 
cache lines in RAM
– The “vgather” instruction helps to 

fill vector registers from cache

• It’s worse than non-aligned 
access
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for (i=0; i<4000000*istride; 
        i+=istride) {
    a[i] = b[i] + c[i]*sfactor;
}
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Diagnosing Cache and Memory Deficiencies

• Really bad stride patterns may prevent vectorization
– The GCC vector info might say, “not vectorized: vectorization is not profitable.”
– The Intel vector report might say, “vectorization possible but seems inefficient”

• Bad stride and other problems may be difficult to detect
– The result is merely poorer performance than might be expected

• Profiling tools like Intel VTune can help
• Intel Advisor makes recommendations based on source
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Conclusions: Vectorization Basics 

• The compiler “automatically” vectorizes tight loops
• Write code that is vector-friendly

– Loop bodies consist of simple multiplications and additions
– Innermost loop accesses arrays with unit stride
– Data in cache are reused; reads from and writes to RAM are minimized

• Write code that avoids the potential issues
– No loop-carried dependencies, branching, aliasing, etc.

• This means you know where vectorization should occur
• Optimization reports will tell you if expectations are met

– Fix code if the compiler is right about it; insert a directive if it is not
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A Few Words on Using Multiple Cores

• Partition workload into coarse-grained tasks
– Assign tasks to different CPU threads
– Try to find SIMD opportunities within each task
– Same strategy works for GPU programming

• Task parallelization is not done automatically
– Multithreading can be done by the compiler if the code has OpenMP directives
– Other APIs exist for multithreading, e.g., Threading Building Blocks (TBB)
– To split up work among processes, use a message passing interface like MPI
– Multithreading assumes shared memory; MPI works for distributed memory, too
– Use MPI if the application will need multiple nodes connected over a network
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# multithread this loop...
For t in [ tasks ]
  #pragma omp simd
  for i in [ task t ]
    # vectorized calculations

Parallelization plan for multiple cores



What About Python? Or MATLAB?

• Use array syntax as much as possible; avoid low-level looping
– Assume that the underlying libraries use SIMD operations on arrays
– In Python, this entails making good use of NumPy and SciPy
– This is actually what “vectorization” means in Python!
– It’s almost the opposite of what to do for compiled code, but the goal is the same

• High-level tasks must be defined using language features or extensions
– Python has multiprocessing rather than multithreading
– MATLAB has the Parallel Computing Toolbox
– Extra coding is required to identify the tasks to be done in parallel

• Entire presentations could be made on each of these subjects!
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A Dirty Little Secret of Scripting Languages

• Interpreted languages like Python and MATLAB are built on compiled code!
– It’s the main way they can get competitive performance
– (Note, Julia may be an exception–I’ve heard it’s Julia all the way down)

• They rely on runtime libraries that are written in C/C++ and (gulp) Fortran!
– The libraries build in many of the tricks and compiler options I’ve described

• Why? NumPy and MATLAB are SIMD-friendly: they’re built for linear algebra
– NumPy is often linked against an optimized implementation of BLAS (e.g., MKL)
– The core libraries can even be multithreaded (e.g., MKL is)

• There are tricks to make these languages behave more like compiled code
– Just-in-time (JIT) compiling, which has an up-front cost (e.g., Numba)
– Source conversion to C/C++,  which is then compiled (e.g., Cython, mcc)
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