
Vector Parallelism on Multi-Core Processors

Steve Lantz, Cornell University

CoDaS-HEP Summer School, July 24, 2024

Vector Parallelism: Motivation

• CPUs are no faster in GHz than they were 15 years ago
– Power limits! Faster clock makes them too hot, inefficient

• Yet process improvements keep making CPUs denser
– Moore’s Law! Add 2x more “stuff” every 18–24 months

• One way to use extra transistors: more cores
– Dual-core Intel chips arrived in 2005; counts keep growing
– Up to 64 in Intel Xeon “Emerald Rapids”, 192 in AMD EPYC

• Another solution: SIMD or vector operations
– First appeared on Intel Pentium with MMX in 1996
– Vectors have ballooned: 512 bits (16 floats) in Intel Xeon
– Can vectorization increase speed by an order of magnitude?

2

Die shot of 28-core Intel Skylake-SP
Source: wikichip.org

Three Ways to Look at Vectorization

1. Hardware Perspective: Run vector instructions
involving special registers and functional units
that allow in-core parallelism for operations on
arrays (vectors) of data.

2. Compiler Perspective: Determine how and when
it is possible to express computations in terms of
vector instructions.

3. Programmer Perspective: Write code with SIMD
in mind; e.g., in a way that allows the compiler
to deduce that vectorization is possible.

3

Hardware Perspective

• SIMD = Single Instruction, Multiple Data
– Part of commodity CPUs (x86, x64, PowerPC) since late ’90s

• Goal: parallelize computations on vector arrays
– Line up operands, execute one op on all simultaneously

• SIMD instructions have gotten speedier over time
– Initially: several cycles for execution on small vectors
– Intel AVX introduced pipelining of some SIMD instructions
– Now: multiply-and-add large vectors on every cycle

• Intel’s line: Cascade Lake, Sapphire/Emerald Rapids…
– 2 VPUs (vector processing units) available per core
– 2 ops/VPU if they do FMAs (Fused Multiply-Add) every cycle

4

Partial block diagram of CLX core
Source: wikichip.org

Evolution of Vector Registers, Instructions

• A core has 16 (SSE, AVX) or 32 (AVX-512) vector registers
• In each cycle, VPUs can access registers, do FMAs (e.g.)

5

8
16

zmm0

AVX-512 (KNL, 2016; prototyped by KNC, 2013)

4
8

ymm0

AVX, 256-bit (2011)

2
4

xmm0

SSE, 128-bit (1999) 64-bit double
32-bit float

Peak Flop/s, and Why It’s Basically a Fiction

• Peak flop/s (FLoating-point OPs per second) is amplified 2x by vector FMAs
• Example with floats on Intel Xeon Gold 6130 “Skylake-SP” @ 2.1 GHz

– (2 x 16 flop/VPU) x (2 VPUs/core) x (16 cores) x 2.1 GHz = 2150 Gflop/s (really?)
• Dubious assumption #1: no slow operations like division or square root

– Peak rate assumes exactly 1 add and 1 multiply (= 2 flops) per VPU per cycle
• Dubious assumption #2: data are loaded and stored with no delay

– Implies heavy reuse of data in vector registers, perfect prefetching into L1 cache
• Dubious assumption #3: clock rate is fixed

– In reality: if all cores are active, Xeon will slow AVX-512 slightly to prevent overheating
• Dubious assumption #4: every instruction in the code is vectorized

– In reality: serial fraction of work S limits the factor in blue to 1/S (Amdahl’s Law)

6

A Quick Word on Amdahl’s Law

7

• SIMD means parallel, so Amdahl’s Law is in effect!
– Linear speedup is possible only for perfectly parallel code
– Amdahl’s asymptote of the speedup curve is 1/(serial fraction)
– Speedup of 16x is unattainable even if 99% of work is vector

Instructions Must Do More Than Just Flops…

• Data Access: Load/Store, Pack/Unpack, Gather/Scatter
• Data Prefetch: Fetch, but don’t load into a register
• Vector Rearrangement: Shuffle, Bcast, Shift, Convert
• Vector Initialization: Random, Set
• Logic: Compare, AND, OR, etc.
• Math: Arithmetic, Trigonometry, Cryptography, etc.
• Variants of the Above… Mask, Swizzle, Implicit Load…

– Combine an operation with data selection or movement

• This is why AVX-512 comprises over 4000 instructions

8

Extension ICX SKX KNL

AVX512F
Foundation X X X

AVX512CD
Conflict Det. X X X

AVX512BW
Byte & Word X X

AVX512DQ
Dble. & Quad. X X

AVX512VL
Vector Length X X

AVX512PF
Prefetch X

AVX512ER
Exp. & Recip. X

AVX512VNNI
Neural Net. X

AVX512…etc.
ICX additions X

How Do We Get Vector Speedup?

• Program the key routines in assembly…
– Ultimate performance potential, but only for the brave

• Program the key routines using SIMD intrinsics...
– Step up from assembly; useful in spots, but risky

ü Link to an optimized high-level library
– Intel MKL, e.g., written by people who know all the tricks
– BLAS is the portable interface for doing fast linear algebra

ü Let the compiler find vectorizable loops and calls!
– Compiler may need some guidance through directives
– Programmer can help by using simple loops and arrays

1 2 3 4

5 6 7 8

6 8 10 12

9

Compiler Perspective

• Vectorization is essentially loop unrolling
– In effect, the compiler unrolls by 4 iterations, if 4 elements fit in a vector register

for (i=0; i<N; i++) {
 c[i]=a[i]+b[i];
}

for (i=0; i<N; i+=4) {
 c[i+0]=a[i+0]+b[i+0];
 c[i+1]=a[i+1]+b[i+1];
 c[i+2]=a[i+2]+b[i+2];
 c[i+3]=a[i+3]+b[i+3];
}

Load a(i..i+3)
Load b(i..i+3)
Do 4-wide a+b->c
Store c(i..i+3)

10

Basic requirements of vectorizable loops

• All loop iterations must be independent of each other
• Number of iterations is known on entry

– No conditional termination (“break” statements, while-loops)

• Single control flow; no “if” or “switch” statements
– But: the compiler may be able to convert “if” to a masked vector assignment!

• Must be the innermost loop, if nested
– But: the compiler may be able to reorder loops as an optimization!

• No function calls but basic math: pow(), sqrt(), sin(), etc.
– But: the compiler may be able to inline user functions as an optimization!

11

Compiler Options and Optimization

• GCC and Clang will vectorize with -O2 or -ftree-vectorize
– Check defaults: echo | gcc-14 -v -dM -E - 2>&1 | egrep "SSE|AVX|NEON|OPT"
– Usual default: SSE for x86_64, NEON for Apple Silicon (128 bits like SSE, nothing bigger)
– To tune vectors and instructions to the host machine: -march=native
– To ensure AVX-512 (x86_64 only): -mprefer-vector-width=512

– To optimize across objects (e.g., to inline functions): -flto
– Note, GCC 11 or prior will vectorize only with -O3 or -ftree-vectorize

• Intel Classic Compilers—now discontinued—will vectorize with -O2
– To tune vectors and instructions to the host machine (usual default is SSE): -xHost
– To ensure AVX-512 (x86_64 only): -qopt-zmm-usage=high
– To optimize across objects (e.g., to inline functions): -ipo

12

Architecture-Specific Compiler Options

• GCC compilers (+ LLVM-based, like Clang, Intel oneAPI,…)
– Specify instruction subset with –m , architecture with -march , exact cpu with -mcpu
– Processor tuning is implied by -mcpu and -march (except, e.g., -march=x86-64-v2)
– To get AVX2 vectors, use -mavx2 -mfma (won’t get FMAs without -mfma)
– To get AVX2 vectors and FMAs plus tuning, use -march=haswell
– GCC 4.9+ has a variety of specific -m options for AVX-512 extensions
– GCC 5.3+ has -march=skylake-avx512 , 9.1+ has -march=cascadelake …and so on
– GCC 8.1+ has -march=icelake-server (Intel released ICX late)

• Intel Classic compilers: most GCC options work, plus…
– Use -xCORE-AVX2 or -xHASWELL to compile for AVX2
– For SKL-SP and later: -xCORE-AVX512

13

Example Code that Does 2 Billion FMAs

14

int main(int argc, char *argv[]) {

 /* Declare arrays small enough to stay in L1 cache.
 Assume the compiler aligns them correctly. */
 double a[ARRAY_SIZE], b[ARRAY_SIZE], c[ARRAY_SIZE];
 int i, t, rc;
 double m = 1.5, w1, w2, d = 0.0;
 char modelname[80];

 /* Initialize a, b and c arrays */
 for (i=0; i < ARRAY_SIZE; i++) {
 a[i] = 0.0; b[i] = i*1.0e-9; c[i] = i*0.5e-9;
 }

 /* Perform operations with arrays many, many times */
 w1 = dtime();
 for (t=0; t < NUMBER_OF_TRIALS; t++) {
 for (i=0; i < ARRAY_SIZE; i++) {
 a[i] += m*(m*b[i] + c[i]);
 }
 }
 w2 = dtime();

 /* Print total time and processor type used in the run.
 Print a result so array ops aren't optimized away. */
 for (i=0; i < ARRAY_SIZE; i++) d += a[i];
 printf("d = %f time = %f\n", d, w2 - w1);
 rc = get_model_name(modelname);
 if (rc == 0) printf("%s", modelname);
}

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#define ARRAY_SIZE 1024
#define NUMBER_OF_TRIALS 1000000

double dtime() {
 double tseconds = 0.0;
 struct timeval my_t;
 gettimeofday(&my_t, NULL);
 tseconds = (double)(my_t.tv_sec + my_t.tv_usec * 1.0e-6);
 return (tseconds);
}

int get_model_name(char *mname) {
 FILE *fp;
 fp = fopen("/proc/cpuinfo", "r");
 if (fp == NULL) {
 strcpy(mname, "(/proc/cpuinfo is not readable)\n");
 return(1);
 }
 /* model name should be on the fifth line */
 for (int i=0; i < 5; i++) fgets(mname, 80, fp);
 fclose(fp);
 return(0);
}

Exercise 1

• The code on the preceding slide is available at this link:
– https://godbolt.org/z/z5jecaae8

• This takes you to the Compiler Explorer website, a great resource that lets you
try lots of compilers and their options and view assembler output
– DEMO showing how different compiler flags affect vectorization
– You can execute code on the site, too, but it’s not great for benchmarking

• Exercise: benchmark the code from the the link above, or the preceding slide
– To work on your laptop: save or copy-paste the code into a file named abc_fma.c
– If you work directly on the website, note that the processor may vary run-to-run

• The next two slides guide you through a series of compile-and-run steps to
show the performance effects of enabling optimization and vectorization

15

https://godbolt.org/z/z5jecaae8

Exercise 1 (cont’d.)

1. Invoke your compiler with no special flags and time a run:

2. Repeat this process for the following sets of options:

– Here are the current lists of architectures that GCC knows about for x86 and for ARM

16

gcc-14 abc_fma.c -o abc_fma
./abc_fma

gcc-14 -march=native abc_fma.c -o abc_fma
gcc-14 -O2 abc_fma.c -o abc_fma
gcc-14 -O2 -march=native abc_fma.c -o abc_fma
gcc-14 -O2 -fno-tree-vectorize abc_fma.c -o abc_fma
gcc-14 -O3 abc_fma.c -o abc_fma
gcc-14 -O3 -march=native abc_fma.c -o abc_fma
gcc-14 -O3 -march=??? abc_fma.c -o abc_fma #take a guess

https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html
https://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html

Exercise 1 (still cont’d.)

3. Your best result should be from -O2 -march=native. Why?
– Other choices may perform slightly better or worse
– Note, -O3 isn’t guaranteed to be better

4. Do you get the expected speedup factors from vectorization?
– NEON (Apple Silicon) or SSE registers hold 2 doubles; AVX registers hold 4 doubles
– Recent laptops should be able to do NEON or AVX (but not AVX-512)

5. Other things to note:
– On x86_64, not specifying an architecture at -O2 is equivalent to -msse3
– Optimization -O2 is further degraded by -fno-tree-vectorize
– Why disable or downsize vectors? To gauge their benefit!
– With Intel’s icc, vectorization is disabled by -no-vec (after -O2 or -O3)

17

Why Not Use an Optimized Library?

• Optimized libraries like
OpenBLAS may not have the
exact function you need

• The kernel of abc_fma.c looks
like a DAXPY, or (aX + Y) with
doubles… but it isn’t quite…

• The inner loop must be
replaced by two DAXPY calls,
not one, and with function
overhead, the resulting code
runs several times slower

18

for (t=0; t < NUMBER_OF_TRIALS; t++) {
 for (i=0; i < ARRAY_SIZE; i++) {
 a[i] += m*(m*b[i] + c[i]);
 }
}

for (t=0; t < NUMBER_OF_TRIALS; t++) {
 cblas_daxpy(ARRAY_SIZE, m*m, b, 1, a, 1);
 cblas_daxpy(ARRAY_SIZE, m, c, 1, a, 1);
}

Programmer Perspective

• Programmer’s goal is to supply code that runs well on hardware
• Thus, you need to start with the hardware perspective

– Think about how instructions will run on vector hardware
– Try also to combine additions with multiplications
– Furthermore, try to reuse everything you bring into cache!

• And you need to add the compiler perspective
– Look at the code like the compiler looks at it
– At a minimum, set the right compiler options!
– But you also have to consider how to lower barriers for the compiler…

19

Challenge: Loop Dependencies

• Vectorization changes the order of computation from sequential order
– Groups of computations now happen simultaneously

• Compiler must be able to prove that vectorization yields correct results
• The key: “unrolled” loop iterations must be independent of each other

– Wider vectors means that bigger groups of iterations must be independent
– Not everything that looks like a dependency truly is one

• Compiler must perform a dependency analysis prior to vectorizing
– It must make conservative assumptions about dependencies
– You can give guidance by inserting compiler directives and keywords

20

Loop Dependencies: Read After Write

Consider adding the following vectors in a loop, N=5:
a = {0,1,2,3,4}
b = {5,6,7,8,9}

Applying each operation sequentially:
a[1] = a[0] + b[1] → a[1] = 0 + 6 → a[1] = 6
a[2] = a[1] + b[2] → a[2] = 6 + 7 → a[2] = 13
a[3] = a[2] + b[3] → a[3] = 13 + 8 → a[3] = 21
a[4] = a[3] + b[4] → a[4] = 21 + 9 → a[4] = 30

a = {0, 6, 13, 21, 30}

for(i=1; i<N; i++)
 a[i] = a[i-1] + b[i];

21

Loop Dependencies: Read After Write

Now let’s try vector operations:
a = {0,1,2,3,4}
b = {5,6,7,8,9}

Applying vector operations, i={1,2,3,4}:
a[i-1] = {0,1,2,3} (load)
b[i] = {6,7,8,9} (load)
{0,1,2,3} + {6,7,8,9} = {6, 8, 10, 12} (operate)
a[i] = {6, 8, 10, 12} (store)

a = {0, 6, 8, 10, 12} ≠ {0, 6, 13, 21, 30} NOT VECTORIZABLE

for(i=1; i<N; i++)
 a[i] = a[i-1] + b[i];

22

Dependencies and Optimization Reports

• Loop-carried dependencies are a common reason for non-vectorization
• Optimization reports say where the compiler found dependencies

– Choose a report level with info about places where vectorization was missed

• Remember, the compiler is conservative about dependencies
– Dig into the details, see if the claimed dependencies really exist in the code
– The Intel compiler is generally better than GCC for this because it is more concise

• Even with no dependencies, vectorization is not guaranteed!
– Compiler may fail to vectorize a loop if it has complicated indexing
– Compiler may decline to vectorize a loop if no performance gain is projected
– Reports give information about these situations too

23

Exercise 2

Let’s examine optimization reports for the abc_fma.c code from Exercise 1.
1. Recompile the code with -O2, along with optimization reporting from the

vectorizer: -fopt-info-vec
– Confirm that the inner loops were vectorized as expected

2. Repeat (1), but with vectorization disabled: -fno-tree-vectorize
– Do you get any output at all?

3. Repeat (1), but instead of disabling, add: -fopt-info-vec-missed
– This reports on the loops that missed out on vectorization
– Considering that the main loops ultimately vectorized, you may find that gcc gives way

too much information here…

24

Exercise 2 (cont’d.)

4. Make a copy of abc_fma.c called abc_fma_shift.c. Edit it and change the
innermost of the nested loops to look like this:

5. The above loop has no dependencies. (Why not?) Compile the code with
vectorization enabled, and request info on loops that missed out:

6. Did gcc vectorize the loop? Look for any “missed” remarks directed at the
loop on line abc_fma_shift.c:46 – or grep for “complicated access pattern”

for (i=0; i < ARRAY_SIZE-1; i++) {
 a[i+1] += m*(m*b[i] + c[i]);
}

gcc-14 -O2 abc_fma_shift.c -o abc_fma_shift -fopt-info-vec-missed

25

Compiler Directives for Vectorization

• Sometimes, it is impossible for the compiler to prove that there is no data
dependency, even if there isn’t one
– e.g., unknown loop index offset, complicated use of pointers

• In this case, you can give it the IVDEP (Ignore Vector DEPendencies) hint
– It assures the compiler, “It’s safe to assume no dependencies”
– Compiler may still choose not to vectorize based on cost
– Example: assume we know M > vector width in doubles...

void vec1(double s1, int M, int N, double *x) {
#pragma GCC ivdep // for Intel, omit GCC
 for(i=M; i<N; i++) x[i] = x[i-M] + s1;

26

OpenMP 4.0 and Vectorization

• OpenMP 4.0 directive: #pragma omp simd
– Motivates the compiler to try harder to vectorize a particular loop
– Can be refined with its own set of OpenMP clauses
– Is enabled by the special compiler option -fopenmp-simd (Intel: -qopenmp-simd)
– Can be combined with other OpenMP constructs; use -fopenmp (Intel: -qopenmp)
– To vectorize the multithreaded example below, GCC needs “simd”, Intel doesn’t

#pragma omp for simd private(x) reduction(+:sum)
for (j=1; j<=num_steps; j++) {
 x = (j-0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
}

27

Challenge: Pointer Aliasing

• In C, pointers can hide data dependencies!
– The memory regions that they point to may overlap… Is this vectorizable?

– …not if we give it the arguments compute(a,a-1,c)
– In effect, b[i] is really a[i-1] → Read After Write dependency

• Compilers can usually cope, at some cost to performance

void compute(double *a, double *b, double *c) {
 for (i=1; i<N; i++) {
 a[i] = b[i] + c[i];
 }
}

28

Getting Past Pointer Aliasing

• C99 introduced the “restrict” keyword to the C language
– Instructs compiler to assume addresses will not overlap, ever

• Intel’s icc may need extra flags: -restrict -std=c99

void compute(double * restrict a, double * restrict b, double * restrict c) {
 for (i=0; i<N; i++) {
 a[i] = b[i] + c[i];
 }
}

29

Memory Performance and Vectorization

• We have mostly been focusing on faster flop/s, but flop/s don’t happen unless
data are present
– Moving data from memory is often the rate-limiting step!

• Data (including scalar data + neighbors) travel between RAM and caches in
groups called “cache lines” that are the exact same size as vectors

• But wait… if data movement is “vectorized”, just like adds and multiplies are
vectorized, then everything is getting the same speedup, right?
– Um, no. The data rate for RAM is slow, even if it is always “vectorized” in a sense
– Well… loads from L1 cache to registers, and stores from registers to L1, do get

vectorized. But that’s just the final short step if the data start way out in RAM

30

Laptop Vector Utilization as a Function of Array Size

Loop overhead

Division – cache does not matter

?

Vector too small

L1 drop off, 32KB

L2 drop off, 256KB

L3 drop off (6MB), too soon?
Output matters, too!

“mtorture” code by Matevž Tadel, UCSD
31

Cache and Alignment

• Optimal vectorization takes you beyond the SIMD unit!
– Cache lines start on 16-, 32-, or 64-byte boundaries in memory
– Sequential, aligned access is much faster than random/strided

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

+

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

=

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

nnn y

y
y
y

x

x
x
x

a

z

z
z
z



3

2

1

3

2

1

3

2

1

*

x1, x2, x3, … xn

Cache

y1, y2, y3, … yna

z1, z2, z3, … zn

32

Strided Access

• Fastest usage pattern is “unit stride”: perfectly sequential
– Cache lines arrive in L1d as full, ready-to-load vectors

• To create unit-stride accesses:
– Store data in structs of arrays (SoA), rather than arrays of structs
– Loop through arrays so their “fast” dimension is innermost
– C/C++ is fastest on the last index; Fortran is fastest on the first

do j=1,n
 do i=1,n
 a(i,j)=b(i,j)*s
 end do
end do

for(j=0;j<n;j++) {
 for(i=0;i<n;i++) {
 a[j][i]=b[j][i]*s;
 }
}

33

Penalty for Strided Access

• Striding through memory
reduces effective memory
bandwidth!
– Roughly by 1/(stride)

• Why? For large stride s, data
must be “gathered” from s
cache lines in RAM
– The “vgather” instruction helps to

fill vector registers from cache

• It’s worse than non-aligned
access

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

0 1 2 3 4 5 6 7 8Ti
m

e
(G

ig
a

C
lo

ck
 P

er
io

ds
)

Stride

Cost of
Memory-Strided Summation

for (i=0; i<4000000*istride;
 i+=istride) {
 a[i] = b[i] + c[i]*sfactor;
}

34

Diagnosing Cache and Memory Deficiencies

• Really bad stride patterns may prevent vectorization
– The GCC vector info might say, “not vectorized: vectorization is not profitable.”
– The Intel vector report might say, “vectorization possible but seems inefficient”

• Bad stride and other problems may be difficult to detect
– The result is merely poorer performance than might be expected

• Profiling tools like Intel VTune can help
• Intel Advisor makes recommendations based on source

35

Conclusions: Vectorization Basics

• The compiler “automatically” vectorizes tight loops
• Write code that is vector-friendly

– Loop bodies consist of simple multiplications and additions
– Innermost loop accesses arrays with unit stride
– Data in cache are reused; reads from and writes to RAM are minimized

• Write code that avoids the potential issues
– No loop-carried dependencies, branching, aliasing, etc.

• This means you know where vectorization should occur
• Optimization reports will tell you if expectations are met

– Fix code if the compiler is right about it; insert a directive if it is not

36

A Few Words on Using Multiple Cores

• Partition workload into coarse-grained tasks
– Assign tasks to different CPU threads
– Try to find SIMD opportunities within each task
– Same strategy works for GPU programming

• Task parallelization is not done automatically
– Multithreading can be done by the compiler if the code has OpenMP directives
– Other APIs exist for multithreading, e.g., Threading Building Blocks (TBB)
– To split up work among processes, use a message passing interface like MPI
– Multithreading assumes shared memory; MPI works for distributed memory, too
– Use MPI if the application will need multiple nodes connected over a network

37

multithread this loop...
For t in [tasks]
 #pragma omp simd
 for i in [task t]
 # vectorized calculations

Parallelization plan for multiple cores

What About Python? Or MATLAB?

• Use array syntax as much as possible; avoid low-level looping
– Assume that the underlying libraries use SIMD operations on arrays
– In Python, this entails making good use of NumPy and SciPy
– This is actually what “vectorization” means in Python!
– It’s almost the opposite of what to do for compiled code, but the goal is the same

• High-level tasks must be defined using language features or extensions
– Python has multiprocessing rather than multithreading
– MATLAB has the Parallel Computing Toolbox
– Extra coding is required to identify the tasks to be done in parallel

• Entire presentations could be made on each of these subjects!

38

A Dirty Little Secret of Scripting Languages

• Interpreted languages like Python and MATLAB are built on compiled code!
– It’s the main way they can get competitive performance
– (Note, Julia may be an exception–I’ve heard it’s Julia all the way down)

• They rely on runtime libraries that are written in C/C++ and (gulp) Fortran!
– The libraries build in many of the tricks and compiler options I’ve described

• Why? NumPy and MATLAB are SIMD-friendly: they’re built for linear algebra
– NumPy is often linked against an optimized implementation of BLAS (e.g., MKL)
– The core libraries can even be multithreaded (e.g., MKL is)

• There are tricks to make these languages behave more like compiled code
– Just-in-time (JIT) compiling, which has an up-front cost (e.g., Numba)
– Source conversion to C/C++, which is then compiled (e.g., Cython, mcc)

39

