Vector Parallelism on Multi-Core Processors

Steve Lantz, Cornell University

CoDaS-HEP Summer School, July 24, 2024

Cornell University
Center for Advanced Computing

(LI,
:’4
A 2
N

S

Vector Parallelism: Motivation

 CPUs are no faster in GHz than they were 15 yearsago I o 'I _ .
o § Lt M "\‘ ' r Y
— Power limits! Faster clock makes them too hot, inefficient ik inf 3“4-,; | '” s

* Yet process improvements keep making CPUs denser
— Moore’s Law! Add 2x more “stuff” every 18—-24 months
* One way to use extra transistors: more cores

— Dual-core Intel chips arrived in 2005; counts keep growing
— Up to 64 in Intel Xeon “Emerald Rapids”, 192 in AMD EPYC

Another solution: SIMD or vector operations » ¥ ::{’, ,,,,,'

. . . . i " ‘ 21
— First appeared on Intel Pentium with MMX in 1996 e Im“ lﬁ i
— Vectors have ballooned: 512 bits (16 floats) in Intel Xeon -
. . . . Die shot of 28-core Intel Skylake-SP
— Can vectorization increase speed by an order of magnitude? Soﬁrce_. W,k,ch,plor_g
o (CT)) g8y Cornell University 5
"f“ Center for Advanced Computing

Three Ways to Look at Vectorization

1. Hardware Perspective: Run vector instructions
involving special registers and functional units
that allow in-core parallelism for operations on
arrays (vectors) of data.

2. Compiler Perspective: Determine how and when
it is possible to express computations in terms of
vector instructions.

3. Programmer Perspective: Write code with SIMD
in mind; e.g., in a way that allows the compiler
to deduce that vectorization is possible.

Cornell University 3
., Center for Advanced Computing

>
&
o

<.

Hardware Perspective

SIMD = Single Instruction, Multiple Data

— Part of commodity CPUs (x86, x64, PowerPC) since late '90s [| " (onegima | CnifiedRe
. . [Port0 | | Portl | [_Port5 |
* Goal: parallelize computations on vector arrays
— Line up operands, execute one op on all simultaneously
. . . . INTV::t M m NTV::t M
* SIMD instructions have gotten speedier over time FrruA_|[_Foiva]

— Initially: several cycles for execution on small vectors

.JE-
-EEI-

— Intel AVX introduced pipelining of some SIMD instructions

Execution Engine
— Now: multiply-and-add large vectors on every cycle 2

* Intel’s line: Cascade Lake, Sapphire/Emerald Rapids... Partial block diagram of CLX core

Source: wikichip.org

— 2 VPUs (vector processing units) available per core
— 2 ops/VPU if they do FMAs (Fused Multiply-Add) every cycle

g8y Cornell University
9) Center for Advanced Computing

S(EE)S
i():

Evolution of Vector Registers, Instructions

64-bit double N SSE, 128-bit (1999)
32-bit float [H i

xmmO

AVX, 256-bit (2011)
C T T T 14

I I I I I I I I I I I I I I I I | 16

* A core has 16 (SSE, AVX) or 32 (AVX-512) vector registers
* In each cycle, VPUs can access registers, do FMAs (e.g.)

L

$eeR) Cornell University
R ,5 Center for Advanced Computing

o -«
- ‘ w,

&,

Peak Flop/s, and Why It’s Basically a Fiction

Peak flop/s (FLoating-point OPs per second) is amplified 2x by vector FMAs
Example with floats on Intel Xeon Gold 6130 “Skylake-SP” @ 2.1 GHz

— (2 x 16 flop/VPU) x (2 VPUs/core) x (16 cores) x 2.1 GHz = 2150 Gflop/s (really?)
Dubious assumption #1: no slow operations like division or square root

— Peak rate assumes exactly 1 add and 1 multiply (= 2 flops) per VPU per cycle
Dubious assumption #2: data are loaded and stored with no delay

— Implies heavy reuse of data in vector registers, perfect prefetching into L1 cache
Dubious assumption #3: clock rate is fixed

— In reality: if all cores are active, Xeon will slow AVX-512 slightly to prevent overheating

Dubious assumption #4: every instruction in the code is vectorized
— In reality: serial fraction of work S limits the factor in blue to 1/S (Amdahl’s Law)

2 Cornell University
J/ Center for Advanced Computing

A Quick Word on Amdahl’s Law

* SIMD means parallel, so Amdahl’s Law is in effect!
— Linear speedup is possible only for perfectly parallel code

— Amdahl’s asymptote of the speedup curve is 1/(serial fraction)
— Speedup of 16x is unattainable even if 99% of work is vector

16 -
- - 100% Pt
g —90% -7
60% _--

5 30% .
® 4
()]
o
(Vp]

2

1

1 2 4 8 16
Vector width

Cornell University
Center for Advanced Computing

N
S —7
2
N
Ty =5

[
N
5 —_—

\/,(

£ 2
HTEBI
\(EE))S
2\ S
4’(1;1\"\

Instructions Must Do More Than Just Flops...

* Data Access: Load/Store, Pack/Unpack, Gather/Scatter
* Data Prefetch: Fetch, but don’t load into a register

* Vector Rearrangement: Shuffle, Bcast, Shift, Convert

» Vector Initialization: Random, Set

* Logic: Compare, AND, OR, etc.

 Math: Arithmetic, Trigonometry, Cryptography, etc.

* Variants of the Above... Mask, Swizzle, Implicit Load...

— Combine an operation with data selection or movement

* This is why AVX-512 comprises over 4000 instructions

Cornell University
Center for Advanced Computing

Extension

AVX512F
Foundation

AVX512CD
Confflict Det.

AVX512BW
Byte & Word

AVX512DQ

Dble. & Quad.

AVX512VL
Vector Length

AVX512PF
Prefetch

AVX512ER
Exp. & Recip.

AVX512VNNI
Neural Net.

AVX512...etc.
ICX additions

How Do We Get Vector Speedup?

* Program the key routines in assembly...

— Ultimate performance potential, but only for the brave

* Program the key routines using SIMD intrinsics... . —
— Step up from assembly; useful in spots, but risky : : + : :
v Link to an optimized high-level library ST —— —J

— Intel MKL, e.g., written by people who know all the tricks

— BLAS is the portable interface for doing fast linear algebra | S
v’ Let the compiler find vectorizable loops and calls!

— Compiler may need some guidance through directives

— Programmer can help by using simple loops and arrays

Cornell University
Center for Advanced Computing

N
.}."4
A 2
&)
o
4‘(:.;\"\

Compiler Perspective

* \ectorization is essentially loop unrolling

— In effect, the compiler unrolls by 4 iterations, if 4 elements fit in a vector register

for (i=0; i<N; i++) {
c[i]=a[i]+b[1i];

\ 4

for (i=0; i<N; i+=4) {

c[i+0]=a[1+0]+b[i+0]; Load a(i..1+3)
c[i+l]=a[i+1l]+b[i+1]; D Load b(i..1+43)
c[i+2]=a[1+2]+b[i+2]; Do 4-wide a+b->c

c[i+3]=a[i+3]+b[i+3]; Store c(i..1+3)

Cornell University

Center for Advanced Computing 10

N
:’4
o 2
N

e

Basic requirements of vectorizable loops

All loop iterations must be independent of each other

 Number of iterations is known on entry

— No conditional termination (“break” statements, while-loops)

e Single control flow; no “if” or “switch” statements

— But: the compiler may be able to convert “if” to a masked vector assignment!

Must be the innermost loop, if nested
— But: the compiler may be able to reorder loops as an optimization!

* No function calls but basic math: pow(), sqgrt(), sin(), etc.

— But: the compiler may be able to inline user functions as an optimization!

Cornell University

Center for Advanced Computing 11

LUNTD
j‘""
2
e
e
4’('_.1\\"\

Compiler Options and Optimization

e GCC and Clang will vectorize with -02 or -ftree-vectorize
— Check defaults: echo | gecc-14 -v -dM -E - 2>&1 | egrep "SSE|AVX|NEON|OPT"
— Usual default: SSE for x86_64, NEON for Apple Silicon (128 bits like SSE, nothing bigger)
— To tune vectors and instructions to the host machine: -march=native
— To ensure AVX-512 (x86 64 only): -mprefer-vector-width=512
— To optimize across objects (e.g., to inline functions): -flto
— Note, GCC 11 or prior will vectorize only with -03 or -ftree-vectorize

Cornell University

Center for Advanced Computing 12

N

S —7
2
S\
Ty

Architecture-Specific Compiler Options

e GCC compilers (+ LLVM-based, like Clang, Intel oneAPI,...)

— Specify instruction subset with -m, architecture with -march, exact cpu with -mcpu
— Processor tuning is implied by -mcpu and -march (except, e.g., -march=x86-64-v2)
— To get AVX2 vectors, use -mavx2 -mfma (won’t get FMAs without -mfma)

— To get AVX2 vectors and FMAs plus tuning, use -march=haswell

— GCC 4.9+ has a variety of specific -m options for AVX-512 extensions

— GCC 5.3+ has -march=skylake-avx512, 9.1+ has -march=cascadelake ..and soon
— GCC 8.1+ has -march=icelake-server (Intel released ICX late)

Cornell University

Center for Advanced Computing 13

N
S —7
2
N
Ty =5

Example Code that Does 2 Billion FMAs

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/time.h>

#define ARRAY_SIZE 1024

#define NUMBER_OF TRIALS 1000000

double dtime() {

int

double tseconds = 0.0;

struct timeval my_t;

gettimeofday(&my t, NULL);

tseconds = (double)(my t.tv_sec + my t.tv_usec * 1.0e-6);
return (tseconds);

get _model name(char *mname) {
FILE *fp;
fp = fopen("/proc/cpuinfo”, "r");
if (fp == NULL) {
strcpy(mname, "(/proc/cpuinfo is not readable)\n");
return(1);
}
/* model name should be on the fifth line */
for (int i=0; i < 5; i++) fgets(mname, 80, fp);
fclose(fp);
return(0);

Cornell University
Center for Advanced Computing

int main(int argc, char *argv[]) {

/* Declare arrays small enough to stay in L1 cache.
Assume the compiler aligns them correctly. */
double a[ARRAY SIZE], b[ARRAY SIZE], c[ARRAY_ SIZE];

int i, t, rc;
double m = 1.5, wl, w2, d = 0.0;
char modelname[80];

/* Initialize a, b and c arrays */
for (i=@; i < ARRAY SIZE; i++) {

al[i] = 0.0; b[i] = i*1.0e-9; c[i] = i*0@.5e-9;
}

/* Perform operations with arrays many, many times */
wl = dtime();
for (t=0; t < NUMBER_OF TRIALS; t++) {
for (i=0; i < ARRAY SIZE; i++) {
a[i] += m*(m*b[i] + c[i]);
}

}
w2 = dtime();

/* Print total time and processor type used in the run.
Print a result so array ops aren't optimized away. */

for (i=0; i < ARRAY_SIZE; i++) d += a[i];

printf("d = %f time = %f\n", d, w2 - wl);

rc = get_model name(modelname);

if (rc == 0) printf("%s", modelname);

14

Exercise 1

 The code on the preceding slide is available at this link:
— https://godbolt.org/z/z5jecaae8

* This takes you to the Compiler Explorer website, a great resource that lets you
try lots of compilers and their options and view assembler output
— DEMO showing how different compiler flags affect vectorization
— You can execute code on the site, too, but it’s not great for benchmarking

e Exercise: benchmark the code from the the link above, or the preceding slide
— To work on your laptop: save or copy-paste the code into a file named abc_fma.c
— If you work directly on the website, note that the processor may vary run-to-run

* The next two slides guide you through a series of compile-and-run steps to
show the performance effects of enabling optimization and vectorization

[
N
5 —_—

\/,(‘ . .
Cornell University
s\EEI)

J/ Center for Advanced Computing 15

https://godbolt.org/z/z5jecaae8

N
:’4
o 2
N

e

Exercise 1 (cont’d.)

1. Invoke your compiler with no special flags and time a run:

gcc-14 abc fma.c -o abc fma

./abc_fma

2. Repeat this process for the following sets of options:

gcc-14
gcc-14
gcc-14
gcc-14
gcc-14
gcc-14
gcc-14

— Here are the current lists of architectures that GCC knows about for x86 and for ARM

Cornell University

-march=native abc fma.c -o abc fma

-02
-02
-02
-03
-03
-03

Center for Advanced Computing

abc fma.c -o abc fma

-march=native abc fma.c -o abc fma

-fno-tree-vectorize abc fma.c -o abc fma

abc fma.c -o abc fma

-march=native abc fma.c -o abc fma

-march=??? abc fma.c -o abc fma

#take a guess

16

https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html
https://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html

Exercise 1 (still cont’d.)

3. Your best result should be from -02 -march=native. Why?

— Other choices may perform slightly better or worse
— Note, -03 isn’t guaranteed to be better

4. Do you get the expected speedup factors from vectorization?
— NEON (Apple Silicon) or SSE registers hold 2 doubles; AVX registers hold 4 doubles
— Recent laptops should be able to do NEON or AVX (but not AVX-512)

5. Other things to note:
— On x86_64, not specifying an architecture at -02 is equivalent to -msse3
— Optimization -02 is further degraded by -fno-tree-vectorize
— Why disable or downsize vectors? To gauge their benefit!

Cornell University

Center for Advanced Computing 17

N
:\"—o
5 2
()
2
4(:”“.‘

Why Not Use an Optimized Library?

* Optimized libraries like
OpenBLAS may not have the
exact function you need

for (t=0; t < NUMBER OF TRIALS; t++) {
for (i=0; i < ARRAY SIZE; i++) ({
a[i] += m* (m*b[i] + c[i]);
 The kernel of abc_fma.c looks }
like a DAXPY, or (aX + Y) with !

doubles... but it isn’t quite... @

. :
The inner loop must be for (t=0; t < NUMBER OF TRIALS; t++) f
replaced by two DAXPY calls, cblas daxpy (ARRAY SIZE, m*m, b, 1, a, 1);

not one, and with function cblas daxpy (ARRAY SIZE, m, c, 1, a, 1);
overhead, the resulting code !
runs several times slower

Cornell University

Center for Advanced Computing 18

N
S —7
2
N
Ty =5

Programmer Perspective

* Programmer’s goal is to supply code that runs well on hardware
* Thus, you need to start with the hardware perspective

— Think about how instructions will run on vector hardware
— Try also to combine additions with multiplications
— Furthermore, try to reuse everything you bring into cache!

 And you need to add the compiler perspective
— Look at the code like the compiler looks at it

— At a minimum, set the right compiler options!
— But you also have to consider how to lower barriers for the compiler...

Cornell University

Center for Advanced Computing 19

N
.}."4
A 2
&)
o
4‘(:.;\"\

LUNTD
,"‘\('
2
e
e
4’('_.1\\"\

Challenge: Loop Dependencies

* Vectorization changes the order of computation from sequential order

— Groups of computations now happen simultaneously

 Compiler must be able to prove that vectorization yields correct results

* The key: “unrolled” loop iterations must be independent of each other

— Wider vectors means that bigger groups of iterations must be independent
— Not everything that looks like a dependency truly is one

 Compiler must perform a dependency analysis prior to vectorizing

— |t must make conservative assumptions about dependencies

— You can give guidance by inserting compiler directives and keywords

Cornell University
Center for Advanced Computing

20

Loop Dependencies: Read After Write

Consider adding the following vectors in a loop, N=5:

a = {OI1I2I3I4} 1
f 1=1; i<N; i++
b ={56,7,8,9) or (1717 A<y 1+

Applying each operation sequentially:

a[l] =a[0] + b[1] - a[1]]=0+6 - a[l]=6
a[2] = a[1] + b[2] = a[2] =6ﬁ:2: =13
a[3] =a[2] + b[3] = a3 =13<(9a:3:=21
a[4] = a[3] + b[4] > a[4] =217 9 = a[4] = 30

a=1{0, 6,13, 21, 30}

2 Cornell University
J/ Center for Advanced Computing

a[i] = a[i-1] + b[i];

Loop Dependencies: Read After Write

Now let’s try vector operations:
a = {011121314}

f 1=1; i<N; i++
b ={56,7,8,9) or (1=17 A<l7 244)

a[i] = a[i-1] + b[i];

Applying vector operations, i={1,2,3,4}:
ali-1]1 ={0,1,2,3} (load)
bli] =1{6,7,8,9} (load)
{0,1,2,3}+{6,7,8,9} = {6, 8, 10, 12} (operate)
ali] = {6, 8, 10, 12} (store)

a=1{0,6,8, 10,12} #1{0, 6,13, 21,30} NOT VECTORIZABLE

m
A

N/
k’4
B8]\
P
5
Ly
52

Cornell University

Center for Advanced Computing 22

(¢

Dependencies and Optimization Reports

* Loop-carried dependencies are a common reason for non-vectorization
e Optimization reports say where the compiler found dependencies
— Choose a report level with info about places where vectorization was missed

* Remember, the compiler is conservative about dependencies

— Dig into the details, see if the claimed dependencies really exist in the code
— The Intel compiler is generally better than GCC for this because it is more concise

Even with no dependencies, vectorization is not guaranteed!

— Compiler may fail to vectorize a loop if it has complicated indexing

— Compiler may decline to vectorize a loop if no performance gain is projected
— Reports give information about these situations too

SN . .
el Cornell University

Center for Advanced Computing 23

(,'
&

OF0 Ao

Exercise 2

Let’s examine optimization reports for the abc_fma.c code from Exercise 1.

1. Recompile the code with -02, along with optimization reporting from the
vectorizer: -fopt-info-vec
— Confirm that the inner loops were vectorized as expected

2. Repeat (1), but with vectorization disabled: -fno-tree-vectorize
— Do you get any output at all?

3. Repeat (1), but instead of disabling, add: -fopt-info-vec-missed

— This reports on the loops that missed out on vectorization

— Considering that the main loops ultimately vectorized, you may find that gcc gives way
too much information here...

Cornell University 24
Center for Advanced Computing

N
.}."4
A 2
&)
o
4‘(:.;\"\

Exercise 2 (cont’d.)

4. Make a copy of abc_fma.c called abc_fma_shift.c. Edit it and change the
innermost of the nested loops to look like this:

for (i=0; i < ARRAY SIZE-1; i++) {
a[i+l] += m* (m*b[i] + c[i]);
}

5. The above loop has no dependencies. (Why not?) Compile the code with
vectorization enabled, and request info on loops that missed out:

gcc-14 -02 abc fma shift.c -o abc fma shift -fopt-info-vec-missed

6. Did gcc vectorize the loop? Look for any “missed” remarks directed at the
loop on line abc_fma_shift.c:46 — or grep for “complicated access pattern”

>
&
o

2

5 Cornell University .
"f“ Center for Advanced Computing

D

Compiler Directives for Vectorization

 Sometimes, it is impossible for the compiler to prove that there is no data
dependency, even if there isn’t one
— e.g., unknown loop index offset, complicated use of pointers

* In this case, you can give it the IVDEP (Ignore Vector DEPendencies) hint
— |t assures the compiler, “It’s safe to assume no dependencies”
— Compiler may still choose not to vectorize based on cost

— Example: assume we know M > vector width in doubles...

void vecl (double sl, int M, int N, double *x) {
#pragma GCC ivdep // for Intel, omit GCC
for (i=M; i<N; i++) x[i] = x[1-M] + sl;

Cornell University

Center for Advanced Computing 26

N
5"4
£ 2
NE
‘ra l“'\

* OpenMP 4.0 directive: #pragma omp simd

Motivates the compiler to try harder to vectorize a particular loop

&R Cornell University
5 Center for Advanced Computing

OpenMP 4.0 and Vectorization

Can be refined with its own set of OpenMP clauses

Is enabled by the special compiler option -fopenmp-simd (Intel: ~gopenmp-simd)
Can be combined with other OpenMP constructs; use -fopenmp (Intel: -gopenmp)
To vectorize the multithreaded example below, GCC needs “simd”, Intel doesn’t

#pragma omp for simd private (x) reduction (+:sum)
for (jJ=1; j<=num steps; Jj++) {

(J-0.5) *step;

sum + 4.0/ (1.0+x*x);

Challenge: Pointer Aliasing

* In C, pointers can hide data dependencies!
— The memory regions that they point to may overlap... Is this vectorizable?

void compute (double *a, double *b, double *c) {
for (i=1; i<N; i++) {
af[i] = b[i] + c[i]:;

}

— ...not if we give it the arguments compute (a,a-1,c)
— In effect, b[i] isreally a[i-1] - Read After Write dependency

 Compilers can usually cope, at some cost to performance

Cornell University

Center for Advanced Computing 28

N
S —7
2
N
Ty =5

Getting Past Pointer Aliasing

* C99 introduced the “restrict” keyword to the C language

— Instructs compiler to assume addresses will not overlap, ever

void compute (double * restrict a, double * restrict b, double * restrict c) {
for (i=0; i<N; i++) {
al[i] = b[i] + c[1i];

}

* Intel’s icc may need extra flags: -restrict -std=c99

Cornell University

Center for Advanced Computing 29

N
:’4
b 2
G

o .“.\

Memory Performance and Vectorization

* We have mostly been focusing on faster flop/s, but flop/s don’t happen unless
data are present

— Moving data from memory is often the rate-limiting step!

e Data (including scalar data + neighbors) travel between RAM and caches in
groups called “cache lines” that are the exact same size as vectors

e But wait... if data movement is “vectorized”, just like adds and multiplies are
vectorized, then everything is getting the same speedup, right?
— Um, no. The data rate for RAM is slow, even if it is always “vectorized” in a sense

— Well... loads from L1 cache to registers, and stores from registers to L1, do get
vectorized. But that’s just the final short step if the data start way out in RAM

[
N
5 —_—

\/,(‘ . .
Cornell University
s\EEI)

J/ Center for Advanced Computing 30

Laptop Vector Utilization as a Function of Array Size

Vector utilization —+— sum?2
50'45 = ¢ sum3
‘;E - L1 drop off, 32KB + mul2
= 04—
= .:_ . ~. > mul3
- / —+— div2
0.35— ; %
- ; > di
- 7‘ —_ % G drop off, 256KB Ll
0.3 E ‘ ? + \
E R ¥
0.25(— 4 \
= v, |)\

Loop overhead L3 drop off (6MB), too soon?

= + | Output matters, too!

0.15— ++ +~+\

01— o ‘_‘ <
Vector too small > R

e %’ Division — cache does not matter B

b
0 1.1 lIIllIl 11 lllllll 1 1 lllllll 1 lllllul L 1 lIlllIl gty lllllll 1 1 lllllll L 1111

1 10 10° 10° 10* 10° 10° 107

Narray

. . “mtorture” code by Matevz Tadel, UCSD
Cornell University 31

Center for Advanced Computing

N
.“’4
b 2
N

o .g.‘

Cache and Alignment

vl,y2,y3,..yn x1,x2,x3,..xXn

Z X
| <7 | M _yn_ z1, 22, 23, ... zn

* Optimal vectorization takes you beyond the SIMD unit!
— Cache lines start on 16-, 32-, or 64-byte boundaries in memory
— Sequential, aligned access is much faster than random/strided

Cornell University

Center for Advanced Computing 32

N
S —7
s’ 2
NE
o",, .0.\9

Strided Access

* Fastest usage pattern is “unit stride”: perfectly sequential

— Cache lines arrive in L1d as full, ready-to-load vectors

* To create unit-stride accesses:
— Store data in structs of arrays (SoA), rather than arrays of structs
— Loop through arrays so their “fast” dimension is innermost
— C/C++ is fastest on the last index; Fortran is fastest on the first

for (j=0;j<n;j++) { do j=1,n
for(i=0;i<n;i++) { do i=1,n
a[31[i1=b[3]1[il*s; a(i,j)=b(i,j)*s
} end do
} end do

Cornell University

Center for Advanced Computing 33

N
3"4
(SR
(G):
&,
4,“”“.‘

Penalty for Strided Access

1di Cost of
) Strldlng through memory Memory-Strided Summation
reduces effective memory 7 2
: 2 —*
bandwidth! £ o ‘/,/.
— Roughly by 1/(stride) 8 oo /‘/o"
. _5 0.1 > E
* Why? For large stride s, data 3008 o
- 0 1 2 3 4 5 6 7 8

must be “gathered” from s Stride
cache lines in RAM

— The “vgather” instruction helps to

i) for (i=0; i<4000000*istride;
fill vector registers from cache

i+=istride) {
* It’s worse than non-aligned a[i] = b[i] + c[i]*sfactor;

access }

Cornell University

Center for Advanced Computing 34

N
5"4
5 2
N

4,,“.\,.‘

Diagnosing Cache and Memory Deficiencies

* Really bad stride patterns may prevent vectorization
— The GCC vector info might say, “not vectorized: vectorization is not profitable.”
— The Intel vector report might say, “vectorization possible but seems inefficient”

* Bad stride and other problems may be difficult to detect

— The result is merely poorer performance than might be expected

* Profiling tools like Intel VTune can help

 |Intel Advisor makes recommendations based on source

Cornell University

Center for Advanced Computing 35

N
.}."4
A 2
&)
o
4‘(:.;\"\

Conclusions: Vectorization Basics

 The compiler “automatically” vectorizes tight loops
* Write code that is vector-friendly

— Loop bodies consist of simple multiplications and additions

— Innermost loop accesses arrays with unit stride

— Data in cache are reused; reads from and writes to RAM are minimized
* Write code that avoids the potential issues

— No loop-carried dependencies, branching, aliasing, etc.
* This means you know where vectorization should occur
e Optimization reports will tell you if expectations are met

— Fix code if the compiler is right about it; insert a directive if it is not

Cornell University

Center for Advanced Computing 36

NP
5"4
e8I
e
&,
wwl“.\

A Few Words on Using Multiple Cores

e Partition workload into coarse-grained tasks
— Assign tasks to different CPU threads
— Try to find SIMD opportunities within each task For t in [tasks]

— Same strategy works for GPU programming for i in [task t]

Parallelization plan for multiple cores

* Task parallelization is not done automatically
— Multithreading can be done by the compiler if the code has OpenMP directives
— Other APIs exist for multithreading, e.g., Threading Building Blocks (TBB)
— To split up work among processes, use a message passing interface like MPI
— Multithreading assumes shared memory; MPIl works for distributed memory, too
— Use MPI if the application will need multiple nodes connected over a network

m“”; . .
2 Cornell University

37
5 Center for Advanced Computing

What About Python? Or MATLAB?

e Use array syntax as much as possible; avoid low-level looping
— Assume that the underlying libraries use SIMD operations on arrays
— In Python, this entails making good use of NumPy and SciPy
— This is actually what “vectorization” means in Python!
— It’s almost the opposite of what to do for compiled code, but the goal is the same

* High-level tasks must be defined using language features or extensions
— Python has multiprocessing rather than multithreading
— MATLAB has the Parallel Computing Toolbox
— Extra coding is required to identify the tasks to be done in parallel

* Entire presentations could be made on each of these subjects!

Cornell University

Center for Advanced Computing 38

NP
f"»
e8I
e
&,
wwl“.\

A Dirty Little Secret of Scripting Languages

* Interpreted languages like Python and MATLAB are built on compiled code!
— It’s the main way they can get competitive performance
— (Note, Julia may be an exception—I've heard it’s Julia all the way down)
* They rely on runtime libraries that are written in C/C++ and (gulp) Fortran!
— The libraries build in many of the tricks and compiler options I've described
Why? NumPy and MATLAB are SIMD-friendly: they’re built for linear algebra
— NumPy is often linked against an optimized implementation of BLAS (e.g., MKL)

— The core libraries can even be multithreaded (e.g., MKL is)

* There are tricks to make these languages behave more like compiled code

— Just-in-time (JIT) compiling, which has an up-front cost (e.g., Numba)
— Source conversion to C/C++, which is then compiled (e.g., Cython, mcc)

[
o
5 —_—

Cornell University -
Q Center for Advanced Computing

