
The Parallel Programming World
Beyond OpenMP

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

Tim Mattson
Human Learning Group

Hardware is diverse … and its only getting worse!!!

CPU

GPU

Cluster

Cloud

Heterogeneous node

SIMD/Vector

The Big Three

• In HPC, 3 programming environments dominate … covering the major classes of hardware.
– MPI: distributed memory systems … though it works nicely on shared memory

computers.

– OpenMP: Shared memory systems … more recently, GPGPU too.

– CUDA, OpenCL, Sycl, OpenACC, OpenMP … : GPU programming (use CUDA if you don’t
mind locking yourself to a single vendor … it is a really nice programming model)

• Even if you don’t plan to spend much time programming with these systems … a well
rounded HPC programmer should know what they are and how they work.

3

You are all OpenMP
experts and know a

great deal about
multithreading

The Big Three

• In HPC, 3 programming environments dominate … covering the major classes of hardware.
– MPI: distributed memory systems … though it works nicely on shared memory

computers.

– OpenMP: Shared memory systems … more recently, GPGPU too.

– CUDA, OpenCL, Sycl, OpenACC, OpenMP … : GPU programming (use CUDA if you don’t
mind locking yourself to a single vendor … it is a really nice programming model)

• Even if you don’t plan to spend much time programming with these systems … a well
rounded HPC programmer should know what they are and how they work.

4

If you don’t
know MPI,
you aren’t
really an

HPC
programmer!

Parallel API’s: MPI … the Message Passing Interface

omp_set_lock(lck)MPI_Bsend_init

MPI_Pack

MPI_Sendrecv_replace

MPI_Recv_init

MPI_Allgatherv

MPI_Unpack

MPI_Sendrecv

MPI_Bcast

MPI_Ssend

C$OMP ORDERED MPI_Startall

MPI_Test_cancelled

MPI_Type_free

MPI_Type_contiguous

MPI_Barrier

MPI_Start

MPI_COMM_WORLD

MPI_Recv

MPI_Send

MPI_Waitall

MPI_Reduce

MPI_Alltoallv

MPI_Group_compare

MPI_Scan
MPI_Group_size

MPI_Errhandler_create

MPI: An API for Writing Clustered
Applications

–A library of routines to coordinate the
execution of multiple processes.
–Provides point to point and collective

communication in Fortran, C and C++
–Unifies last 25+ years of cluster

computing and MPP practice

Programming Model: Message Passing
• Program consists of a collection of processes.
– Number of processes almost always fixed at program startup time
– Local address space per node -- NO physically shared memory.
– Logically shared data is partitioned over local processes.

• Processes communicate by explicit send/receive pairs
– Synchronization is implicit by communication events.
– MPI (Message Passing Interface) is the most commonly used API

PnP1P0

s: 12

i: 2

Private
memory

s: 14

i: 3

s: 11

i: 1

send P1,s

Network

receive Pn,s

How do people use MPI?
The SPMD Design Pattern

Replicate the program.

Add glue code

Break up the data

A sequential program
working on a data set

•A single program working on a
decomposed data set.

•Use Node ID and numb of nodes to
split up work between processes

• Coordination by passing messages.

An MPI program at runtime

• Typically, when you run an MPI program, multiple processes
running the same program are launched … working on their
own block of data.

The collection of
processes
involved in a
computation is
called “a
process group”

MPI functions work within a “context”: MPI actions occurring in different
contexts, even if they share a process group, cannot interfere with each other.

MPI Hello World

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){
 int rank, size;
 MPI_Init (&argc, &argv);
 MPI_Comm_rank (MPI_COMM_WORLD, &rank);
 MPI_Comm_size (MPI_COMM_WORLD, &size);
 printf("Hello from process %d of %d\n",
 rank, size);
 MPI_Finalize();
 return 0;
}

Initializing and finalizing MPI

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){
 int rank, size;
 MPI_Init (&argc, &argv);
 MPI_Comm_rank (MPI_COMM_WORLD, &rank);
 MPI_Comm_size (MPI_COMM_WORLD, &size);
 printf("Hello from process %d of %d\n",
 rank, size);
 MPI_Finalize();
 return 0;
}

int MPI_Init (int* argc, char* argv[])
§ Initializes the MPI library … called before any other MPI

functions.
§ agrc and argv are the command line args passed from main()

int MPI_Finalize (void)
§ Frees memory allocated by the MPI library … close

every MPI program with a call to MPI_Finalize

How many processes are involved?

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){
 int rank, size;
 MPI_Init (&argc, &argv);
 MPI_Comm_rank (MPI_COMM_WORLD, &rank);
 MPI_Comm_size (MPI_COMM_WORLD, &size);
 printf("Hello from process %d of %d\n",
 rank, size);
 MPI_Finalize();
 return 0;
}

int MPI_Comm_size (MPI_Comm comm, int* size)
§ MPI_Comm, an opaque data type called a communicator. Default

context: MPI_COMM_WORLD (all processes)
§ MPI_Comm_size returns the number of processes in the process

group associated with the communicator

Communicators consist of two parts, a
context and a process group.

The communicator lets one control how
groups of messages interact.

Communicators support modular SW …
i.e. I can give a library module its own
communicator and know that it’s
messages can’t collide with messages
originating from outside the module

Which process “am I” (the rank)

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){
 int rank, size;
 MPI_Init (&argc, &argv);
 MPI_Comm_rank (MPI_COMM_WORLD, &rank);
 MPI_Comm_size (MPI_COMM_WORLD, &size);
 printf("Hello from process %d of %d\n",
 rank, size);
 MPI_Finalize();
 return 0;
}

int MPI_Comm_rank (MPI_Comm comm, int* rank)
§ MPI_Comm, an opaque data type, a communicator. Default context:

MPI_COMM_WORLD (all processes)
§ MPI_Comm_rank An integer ranging from 0 to “(num of procs)-1”

Note that other than init() and finalize(),
every MPI function has a communicator.

This makes sense .. You need a context
and group of processes that the MPI
functions impact … and those come
from the communicator.

Running the program

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){
 int rank, size;
 MPI_Init (&argc, &argv);
 MPI_Comm_rank (MPI_COMM_WORLD, &rank);
 MPI_Comm_size (MPI_COMM_WORLD, &size);
 printf("Hello from process %d of %d\n",
 rank, size);
 MPI_Finalize();
 return 0;
}

§ On a 4 node cluster, to run this program (hello):
> mpiexec –np 4 –hostfile hostf hello

• Where “hostf” is a file with the names of the
cluster nodes, one to a line.

• Would would this program output?

Running the program

#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv){
 int rank, size;
 MPI_Init (&argc, &argv);
 MPI_Comm_rank (MPI_COMM_WORLD, &rank);
 MPI_Comm_size (MPI_COMM_WORLD, &size);
 printf("Hello from process %d of %d\n",
 rank, size);
 MPI_Finalize();
 return 0;
}

§ On a 4 node cluster, to run this program (hello):
> mpiexec –np 4 –hostfile hostf hello
Hello from process 1 of 4
Hello from process 2 of 4
Hello from process 0 of 4
Hello from process 3 of 4

• Where “hostf” is a file with the names of the
cluster nodes, one to a line.

Bulk Synchronous Programming:
A common design pattern used with MPI Programs

• Many MPI applications have few (if any) sends and receives.
They use the following very common pattern:

§ Use the Single Program Multiple Data pattern

§ Each process maintains a local view of the global data

§ A problem broken down into phases each of which is
composed of two subphases:

• Compute on local view of data
• Communicate to update global view on all processes

(collective communication).

§ Continue phases until complete

Collective comm.

Collective comm.

P0 P3P2P1

Processes

Time

This is a subset or the SPMD pattern sometimes
referred to as the Bulk Synchronous pattern.

Example Problem: Numerical Integration

ò 4.0
(1+x2) dx = p

0

1

å F(xi)Dx » p
i = 0

N

Mathematically, we know that:

We can approximate the
integral as a sum of
rectangles:

Where each rectangle has
width Dx and height F(xi) at
the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2)

4.0

2.0

1.0
X0.0

PI Program: an example

static long num_steps = 100000;
double step;
void main ()
{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;
 x = 0.5 * step;
 for (i=0;i<= num_steps; i++){
 x+=step;
 sum += 4.0/(1.0+x*x);
 }
 pi = step * sum;
}

Pi program in MPI … using the BSP pattern

#include <mpi.h>
void main (int argc, char *argv[])
{
 int i, my_id, numprocs; double x, pi, step, sum = 0.0 ;
 step = 1.0/(double) num_steps ;
 MPI_Init(&argc, &argv) ;
 MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ;
 MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;
 my_steps = num_steps/numprocs ;
 for (i=my_id*my_steps; i<(my_id+1)*my_steps ; i++)
 {
 x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }
 sum *= step ;
 MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

 MPI_COMM_WORLD) ;
}

Sum values in “sum” from
each process and place it

in “pi” on process 0

Reduction
int MPI_Reduce (void* sendbuf,

 void* recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op,
 int root, MPI_Comm comm)

• MPI_Reduce performs specified reduction operation on specified data
from all processes in communicator, places result in process “root” only.

• MPI_Allreduce places result in all processes (avoid unless necessary)

Operation Function
MPI_SUM Summation
MPI_PROD Product
MPI_MIN Minimum value
MPI_MINLOC Minimum value and location
MPI_MAX Maximum value
MPI_MAXLOC Maximum value and location
MPI_LAND Logical AND

Operation Function
MPI_BAND Bitwise AND
MPI_LOR Logical OR
MPI_BOR Bitwise OR
MPI_LXOR Logical exclusive OR
MPI_BXOR Bitwise exclusive OR

User-defined It is possible to define new
reduction operations

Sending and receiving messages
• Pass a buffer which holds “count” values of MPI_TYPE
• The data in a message to send or receive is described by a triple:

– (address, count, datatype)

Buffer
address

count Datatype

MPI_Send (buff, 100, MPI_DOUBLE, Dest, tag, MPI_COMM_WORLD);

• The receiving process identifies messages with the double :
- (source, tag)

• Where:
- Source is the rank of the sending process
- Tag is a user-defined integer to help the receiver keep track of different

messages from a single source

Rank of Source node

tag

MPI_Recv (buff, 100, MPI_DOUBLE, Src, tag, MPI_COMM_WORLD, &status);

Blocking Send-Receive Timing Diagram
(MPI functions return when local buffer can be used again)

send side receive side

MPI_Send: T1

T4: MPI_Recv returns

MPI_Send returns T2

Once receive
is called @ T0,
Local buffer unavailable
to user

Local buffer filled and
available to user

It is important to post the receive before
sending, for highest performance.

T0: MPI_Recv

Local
buffer can
be reused

T3: Transfer Complete

time time

buffer unavailable
to user

Non-Blocking Send-Receive Diagram
(MPI functions return immediately)

send side receive side

MPI_Isend

T8: MPI_Wait returns

T3 buffer unavailable
to user

receive buffer
filled and available

to the user

T0: MPI_Irecv

T7: transfer finishes

T4: MPI_Wait called

Sender completes

T1: MPI_Irecv Returns

T5

time time

T2
MPI_Isend returns

T6
T9

MPI_Wait

MPI_Wait returns

buffer available
to user

23

Example: finite difference methods

• Solve the heat diffusion equation in 1 D:
– u(x,t) describes the temperature field
– We set the heat diffusion constant to one
– Boundary conditions, constant u at endpoints.

ihxxi += 0

t
u

x
u

¶
¶

=
¶
¶

2

2

n map onto a mesh with stepsize h and k

n Central difference approximation for spatial
derivative (at fixed time) 2

11
2

2 2
h

uuu
x
u jjj -+ +-

=
¶
¶

iktti += 0

n Time derivative at t = tn+1
k
uu

dt
du nn -

=
+1

24

Example: Explicit finite differences
n Combining time derivative expression using spatial derivative at t = tn

2
11

1 2
h

uuu
k
uu n

j
n
j

n
j

n
j

n
j -+
+ +-

=
-

n Solve for u at time n+1 and step j

n The solution at t = tn+1 is determined explicitly from the solution at t = tn
(assume u[t][0] = u[t][N] = Constant for all t).

n
j

n
j

n
j

n
j ruruuru 11
1)21(+-
+ ++-=

2h
kr =

for (int t = 0; t < N_STEPS-1; ++t)
 for (int x = 1; x < N-1; ++x)
 u[t+1][x] = u[t][x] + r*(u[t][x+1] - 2*u[t][x] + u[t][x-1]);

n Explicit methods are easy to compute … each point updated based on
nearest neighbors. Converges for r<1/2.

Heat Diffusion equation

infinitesimally narrow rod (~one D)

“infinite” heat
bath (fixed

temperature, T2)

“infinite” heat
bath (fixed

temperature, T1)

T2T1

25

Heat Diffusion equation

infinitesimally narrow rod (~one D)

T2T1

Pictorially, you are sliding a three point
“stencil” across the domain (u) and
updating the center point at each stop.

26

Heat Diffusion equation

int main()
{
 double *u = malloc (sizeof(double) * (N));
 double *up1 = malloc (sizeof(double) * (N));

 initialize_data(uk, ukp1, N, P); // init to zero, set end temperatures
 for (int t = 0; t < N_STEPS; ++t){
 for (int x = 1; x < N-1; ++x)
 up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

 temp = up1; up1 = u; u = temp;
 }
return 0;

T2T1

A well-known trick with 2 arrays so I
don’t overwrite values from step k-1
as I fill in for step k

Note: I don’t need the
intermediate “u[t]” values

hence “u” is just indexed by x.

Heat Diffusion equation

int main()
{
 double *u = malloc (sizeof(double) * (N));
 double *up1 = malloc (sizeof(double) * (N));

 initialize_data(uk, ukp1, N, P); // init to zero, set end temperatures
 for (int t = 0; t < N_STEPS; ++t){
 for (int x = 1; x < N-1; ++x)
 up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

 temp = up1; up1 = u; u = temp;
 }
return 0;

T2T1

How would
you parallelize
this program?

Heat Diffusion equation

T2T1

• Start with our original picture of the problem … a one
dimensional domain with end points set at a fixed
temperature.

Heat Diffusion equation

T2T1

• Break it into chunks assigning one chunk to each process.

P0 P1 P2 P3

Heat Diffusion equation

T2T1

• Each process works on it’s own chunk … sliding the stencil
across the domain to updates its own data.

P0 P1 P2 P3

Heat Diffusion equation

T2T1

• What about the ends of each chunk … where the stencil will
run off the end and hence have missing values for the
computation?

Heat Diffusion equation

T2T1

• We add ghost cells to the ends of each chunk, update them
with the required values from neighbor chunks at each time
step … hence giving the stencil everything it needs on any
given chunk to update all of its values.

Ghost cell

Ghost cell

Design Pattern: Geometric Decomposition

• Use when:
– The problem is organized around a central data structure that can be decomposed into smaller

segments (chunks) that can be updated concurrently.
• Solution

– Typically, the data structure is updated iteratively where a new value for one chunk depends on
neighboring chunks.

– The computation breaks down into three components: (1) exchange boundary data, (2) update
the interiors or each chunk, and (3) update boundary regions. The optimal size of the chunks is
dictated by the properties of the memory hierarchy.

• Note:
– This pattern is often used with the Structured Mesh and linear algebra computational strategy

pattern.

The Geometric Decomposition Pattern

T2T1

Ghost cell

Ghost cell

§ This is an instance of a very important design pattern … the Geometric
decomposition pattern.

Heat Diffusion MPI Example
MPI_Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &P);
MPI_Comm_rank (MPI_COMM_WORLD, &myID);
double *u = malloc (sizeof(double) * (2 + N/P)) // include "Ghost Cells” to hold
double *up1 = malloc (sizeof(double) * (2 + N/P)); // values from my neighbors

initialize_data(uk, ukp1, N, P);
for (int t = 0; t < N_STEPS; ++t){
 if (myID != 0) MPI_Send (&u[1], 1, MPI_DOUBLE, myID-1, 0, MPI_COMM_WORLD);
 if (myID != P-1) MPI_Recv (&u[N/P+1], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD, &status);
 if (myID != P-1) MPI_Send (&u[N/P], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD);
 if (myID != 0) MPI_Recv (&u[0], 1, MPI_DOUBLE, myID-1, 0,MPI_COMM_WORLD, &status);

 for (int x = 1; x <= N/P; ++x)
 up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);
 if (myID != 0)
 up1[1] = u[1] + (k / (h*h)) * (u[1+1] - 2*u[1] + u[1-1]);
 if (myID != P-1)
 up1[N/P] = u[N/P] + (k/(h*h)) * (u[N/P+1] - 2*u[N/P] + u[N/P-1]);
 temp = up1; up1 = u; u = temp;

} // End of for (int t ...) loop

MPI_Finalize();
return 0;

We write/explain
this part first and
then address the
communication and
data structures

Heat Diffusion MPI Example

 for (int x = 1; x <= N/P; ++x)
 up1[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

 if (myID != 0)
 up1[1] = u[1] + (k / (h*h)) * (u[1+1] - 2*u[1] + u[1-1]);

 if (myID != P-1)
 up1[N/P] = u[N/P] + (k/(h*h)) * (u[N/P+1] - 2*u[N/P] + u[N/P-1]);

 temp = up1; up1 = u; u = temp;

} // End of for (int t ...) loop

MPI_Finalize();
return 0;

Note I was lazy and assume N was evenly
divided by P. Clearly, I’d never do this in a
“real” program.

Temperature fields using local data and values
from ghost cells.

u[0] and u[N/P+1]
are the ghost

cells

Heat Diffusion MPI Example
MPI_Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &P);
MPI_Comm_rank (MPI_COMM_WORLD, &myID);
double *u = malloc (sizeof(double) * (2 + N/P)) // include "Ghost Cells"
double *up1 = malloc (sizeof(double) * (2 + N/P)); // to hold values
 // from my neighbors
initialize_data(uk, ukp1, N, P);
for (int t = 0; t < N_STEPS; ++t){
 if (myID != 0)
 MPI_Send (&u[1], 1, MPI_DOUBLE, myID-1, 0, MPI_COMM_WORLD);

 if (myID != P-1)
 MPI_Recv (&u[N/P+1], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD, &status);

 if (myID != P-1)
 MPI_Send (&u[N/P], 1, MPI_DOUBLE, myID+1, 0, MPI_COMM_WORLD);

 if (myID != 0)
 MPI_Recv (&u[0], 1, MPI_DOUBLE, myID-1, 0,MPI_COMM_WORLD, &status);

1D PDE solver … the simplest “real” message
passing code I can think of. Note: edges of
domain held at a fixed temperature

Send my “right” boundary value to my “right’ neighbor

Receive my “left” ghost cell from my “left’ neighbor

Send my “left” boundary value to my “left’ neighbor

Receive my “right” ghost cell from my “right’ neighbor

MPI is huge!!!

• MPI has over 430 functions!!!
– Many forms of message passing
– Full range of collectives (such as reduction)
– dynamic process management
– Shared memory
– and much more

• Most programs, however use around a dozen different constructs … so
it’s not as hard to learn as it may seem.

39

Does a shared address space make
programming easier?

Time

Effort

Extra work upfront, but easier
optimization and debugging means

overall, less time to solution
Message passing

Time

Effort

initial parallelization can be
quite easy

Multi-threading

But difficult debugging and
optimization means overall

project takes longer

*P. N. Klein, H. Lu, and R. H. B. Netzer, Detecting Race Conditions in Parallel Programs that Use Semaphores, Algorithmica, vol. 35 pp. 321–345, 2003

Proving that a shared address space program using
semaphores is race free is an NP-complete problem*

The Big Three

• In HPC, 3 programming environments dominate … covering the major classes of hardware.
– MPI: distributed memory systems … though it works nicely on shared memory

computers.

– OpenMP: Shared memory systems … more recently, GPGPU too.

– CUDA, OpenCL, Sycl, OpenACC, OpenMP … : GPU programming (use CUDA if you don’t
mind locking yourself to a single vendor … it is a really nice programming model)

• Even if you don’t plan to spend much time programming with these systems … a well
rounded HPC programmer should know what they are and how they work.

41

The “new”
kid on the
block …
GPUs

OpenMP Basic Definitions: Basic Solution Stack

OpenMP Runtime library

OS/system support for shared memory and threading

Sy
st

em
 la

ye
r

Directives,
Compiler

OpenMP library Environment
variablesPr

og
.

La
ye

r

Application

End User

U
se

r l
ay

er
H

W

Shared address space (SMP)

. . .

For the OpenMP Common Core, we focus on Symmetric Multiprocessor Case ….
i.e., lots of threads with “equal cost access” to memory 42

43

OpenMP Basic Definitions: Solution stack

OpenMP Runtime library

OS/system support for shared memory and threading

Sy
st

em
 la

ye
r

Directives,
Compiler

OpenMP library Environment
variablesPr

og
.

La
ye

r

Application

End User

U
se

r l
ay

er

CPU cores SIMD units GPU cores

Shared address space (NUMA)

H
W

43

The “BIG idea” Behind GPU programming

// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < N) c[i] = a[i] + b[i];
}

int main () {
 int N = ... ;
 float *a, *b, *c;
 cudaMalloc (&a, sizeof(float) * N);
 // ... allocate other arrays (b and c)
 // and fill with data

 // Use thread blocks with 256 threads each
 vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);
}

44

Assume a GPU with
unified shared memory

… allocate on host,
visible on device too

int main() {
 int N = . . . ;
 float *a, *b, *c;

 a* =(float *) malloc(N * sizeof(float));

 // ... allocate other arrays (b and c)
 // and fill with data

 for (int i=0;i<N; i++)
 c[i] = a[i] + b{i];

}

Traditional Loop based vector addition (vadd)

Data Parallel vadd with CUDA

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

L3 Cache
Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

L1 Cache

L2 Cache

G
PU

 M
em

or
y

L2 Cache

L2 Cache L2 Cache

G
PU

 M
em

or
y

G
PU

 M
em

or
y

G
PU

 M
em

or
y

A Generic GPU (following Hennessey and Patterson)

A multithreaded SIMD
processor

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

L3 Cache
Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

L1 Cache

L2 Cache

G
PU

 M
em

or
y

L2 Cache

L2 Cache L2 Cache

G
PU

 M
em

or
y

G
PU

 M
em

or
y

G
PU

 M
em

or
y

A Generic GPU (following Hennessey and Patterson)

Private Memory (work-item)

Local Memory (work-group)

Global Memory (kernel)

Logical Memory Hierarchy

How do we execute code on a GPU:
The SIMT model (Single Instruction Multiple Thread)

48

extern void reduce(__local float*, __global float*);

__kernel void pi(const int niters, float step_size,
 __local float* l_sums, __global float* p_sums)
{
 int n_wrk_items = get_local_size(0);
 int loc_id = get_local_id(0);
 int grp_id = get_group_id(0);
 float x, accum = 0.0f; int i,istart,iend;

 istart = (grp_id * n_wrk_items + loc_id) * niters;
 iend = istart+niters;

 for(i= istart; i<iend; i++){
 x = (i+0.5f)*step_size; accum += 4.0f/(1.0f+x*x); }

 l_sums[local_id] = accum;
 barrier(CLK_LOCAL_MEM_FENCE);
 reduce(l_sums, p_sums);
}

1. Turn source code into a scalar work-
item

2. Map work-items onto an
N dim index space.

4. Run on hardware
designed around the

same SIMT
execution model

3. Map data structures
onto the same index

spaceThis is OpenCL kernel code … the sort
of code the OpenMP compiler generates

on your behalf

Third Party names are the property of their owners

GPU terminology is Broken (sorry about that)

49

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

cache

G
PU

 M
em

ory

L3$

ALU

L1D$

L2$

L1I$

ALU

L1D$

L2$

L1I$

L1D$

L2$

ALU

L1I$ L1D$

L2$

ALU

L1I$

SIMD LanesSIMD Lanes

SIMD Lanes SIMD Lanes

Program
defines work

For a CPU

For a GPU

Work decomposed
into blocks

Work
decomposed into

work-items

Organized into
work-groups

One work-group per
compute-unit executing

Executing a program on CPUs and GPUs

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

cache

G
PU

 M
em

ory

L3$

ALU

L1D$

L2$

L1I$

ALU

L1D$

L2$

L1I$

L1D$

L2$

ALU

L1I$ L1D$

L2$

ALU

L1I$

SIMD LanesSIMD Lanes

SIMD Lanes SIMD Lanes

Program
defines work

For a CPU

For a GPU

Work decomposed
into blocks

Work
decomposed into

work-items

Organized into
work-groups

Enqueued for
execution

Mapped onto
threads for
execution

One work-group per
compute-unit executing

Executing a program on CPUs and GPUs

CPU/GPU execution modesl

For a CPU, the
threads are all
active and able

to make forward
progress.

For a GPU, any
given work-group

might be in the
queue waiting to

execute.

A Generic Host/Device Platform Model

• One Host and one or more Devices
– Each Device is composed of one or more Compute Units
– Each Compute Unit is divided into one or more Processing Elements

• Memory divided into host memory and device memory

Processing
Element

Device

……
…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

Third party names are the property of their owners. 53

Running code on the GPU:
The target construct and default data movement

Host thread
Generating Task

Initial task

Target task

#pragma omp target
{
 target region,
can use A, B and N

}

Device Initial
thread

Host thread
waits for the

task region to
complete

float A[N], B[N]; A, B and N
mapped to the

device

the arrays
A and B

mapped back to
the host

Based on figure 6.4 in Using OpenMP – The Next Step by van der Pas, Stotzer and Terboven, MIT Press, 2017

Scalars and statically allocated
arrays are moved onto the device

by default before execution

Only the statically allocated arrays
are moved back to the host after

the target region completes

54

Default Data Sharing: example
int main(void) {
 int N = 1024;
 double A[N], B[N];

 #pragma omp target
 {

 for (int ii = 0; ii < N; ++ii) {

 A[ii] = A[ii] + B[ii];

 }

 } // end of target region
}

1. Variables created in host
memory.

2. Scalar N and stack arrays
A and B are copied to device

memory. Execution
transferred to device.

3. ii is private on the device
as it’s declared within the

target region

4. Execution on the device.

5. stack arrays A and B are
copied from device memory

back to the host. Host
resumes execution.

55

Now let’s run code in parallel on the device
int main(void) {
 int N = 1024;
 double A[N], B[N];

 #pragma omp target
 {
 #pragma omp loop
 for (int ii = 0; ii < N; ++ii) {

 A[ii] = A[ii] + B[ii];

 }

 } // end of target region
}

The loop construct tells the compiler:
“this loop will execute correctly if

the loop iterations run in any order.
You can safely run them

concurrently. And the loop-body
doesn’t contain any OpenMP

constructs. So do whatever you
can to make the code run fast”

56

The loop construct is a declarative construct. You
tell the compiler what you want done but you DO
NOT tell it how to “do it”. This is new for OpenMP

• Pointers and their data:
– Example: arrays allocated on the heap
– double *A = malloc(sizeof(double)*1000);

– The pointer value will be mapped*.

– But the data it points to will not be mapped by default.

57

What about pointers?
implicit movement with a target region

*Mapped: A variable defined on the host is mapped onto a device when the variable is associated with a
version on the device and the value on the host is copied onto the device

Explicit Data Sharing

• Data allocated on the heap needs to be explicitly copied to/from the device

• We explicitly control the movement of data using the map clause.

int main(void) {
 int ii=0, N = 1024;
 int* A = malloc(sizeof(int)*N);

 #pragma omp target
 {
 // N, ii and A all exist here
 // The data that A points to (*A , A[ii]) DOES NOT exist here!
 }
}

58

Controlling data movement

• The various forms of the map clause
– map(to:list): On entering the region, variables in the list are initialized on the device

using the original values from the host (host to device copy).
– map(from:list): At the end of the target region, the values from variables in the list

are copied into the original variables (device to host copy). On entering the region,
initial value of the variable is not initialized.

– map(tofrom:list): the effect of both a map-to and a map-from (host to device copy at
start of region, device to host copy at end)

– map(alloc:list): On entering the region, data is allocated and uninitialized on the
device.

– map(list): equivalent to map(tofrom:list).

• For pointers you must use array section notation ..
– map(to:a[0:N]). Notation is A[lower-bound : length]

int i, a[N], b[N], c[N];
#pragma omp target map(to:a,b) map(tofrom:c)

Data movement
defined from the
host perspective.

59

Moving arrays with the map clause

int main(void) {
 int N = 1024;
 int* A = malloc(sizeof(int)*N);

 #pragma omp target map(A[0:N])
 {
 // N, ii and A all exist here
 // The data that A points to DOES exist here!
 }
}

Default mapping
map(tofrom: A[0:N])

Copy at start and end of
target region.

60

Our running example: Jacobi solver

• An iterative method to solve a system of linear equations
– Given a matrix A and a vector b find the vector x such that Ax=b

• The basic algorithm:
– Write A as a lower triangular (L), upper triangular (U) and diagonal matrix

 Ax = (L+D+U)x = b
– Carry out multiplications and rearrange

 Dx=b-(L+U)x à x = (b-(L+U)x)/D
– Iteratively compute a new x using the x from the previous iteration

 Xnew = (b-(L+U)xold)/D

• Advantage: we can easily test if the answer is correct by multiplying our
final x by A and comparing to b

• Disadvantage: It takes many iterations and only works for diagonally
dominant matrices

61

Jacobi Solver

<<< allocate and initialize the matrix A >>>
<<< and vectors x1, x2 and b >>>

while((conv > TOL) && (iters<MAX_ITERS))
 {
 iters++;

for (i=0; i<Ndim; i++){
 xnew[i] = (TYPE) 0.0;

for (j=0; j<Ndim;j++){
 if(i!=j)
 xnew[i]+= A[i*Ndim + j]*xold[j];
 }
 xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
 }

 // test convergence
 conv = 0.0;

for (i=0; i<Ndim; i++){
 tmp = xnew[i]-xold[i];
 conv += tmp*tmp;
 }
 conv = sqrt((double)conv);

 // swap pointers for next
 // iteration
 TYPE* tmp = xold;
 xold = xnew;
 xnew = tmp;

} // end while loop

Iteratively update xnew until the value stabilizes (i.e. change less than a preset TOL)

62

Jacobi Solver (Parallel Target/loop, 1/2)
while((conv > TOL) && (iters<MAX_ITERS))
 {
 iters++;
#pragma omp target map(tofrom:xnew[0:Ndim],xold[0:Ndim]) \
 map(to:A[0:Ndim*Ndim], b[0:Ndim])
#pragma omp loop
for (i=0; i<Ndim; i++){
 xnew[i] = (TYPE) 0.0;

for (j=0; j<Ndim;j++){
 if(i!=j)
 xnew[i]+= A[i*Ndim + j]*xold[j];
 }
 xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
 }

63

Jacobi Solver (Parallel Target/loop, 2/2)
//

 // test convergence
 //

 conv = 0.0;
 #pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]) \
 map(tofrom:conv)
#pragma omp loop private(i,tmp) reduction(+:conv)
for (i=0; i<Ndim; i++){

 tmp = xnew[i]-xold[i];
 conv += tmp*tmp;

 }
 conv = sqrt((double)conv);
 TYPE* tmp = xold;
 xold = xnew;
 xnew = tmp;
} // end while loop

This worked but the performance was
awful. Why?

System Implementation Ndim = 4096
NVIDA®
K20X™
GPU

Target dir per
loop

131.94 secs

Cray® XC40™ Supercomputer running Cray® Compiling Environment 8.5.3.
Intel® Xeon ® CPU E5-2697 v2 @ 2.70GHz with 32 GB DDR3. NVIDIA® Tesla® K20X, 6GB.

64

Data movement dominates!!!
while((conv > TOLERANCE) && (iters<MAX_ITERS))
 { iters++;
 xnew = iters % s ? x2 : x1;
 xold = iters % s ? x1 : x2;

 #pragma omp target map(tofrom:xnew[0:Ndim],xold[0:Ndim]) \
 map(to:A[0:Ndim*Ndim], b[0:Ndim])
 #pragma omp loop private(i,j)

for (i=0; i<Ndim; i++){
 xnew[i] = (TYPE) 0.0;

for (j=0; j<Ndim;j++){
 if(i!=j)
 xnew[i]+= A[i*Ndim + j]*xold[j];
 }
 xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
 }
// test convergence
 conv = 0.0;
 #pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]) \
 map(tofrom:conv)
 #pragma loop reduction(+:conv)

for (i=0; i<Ndim; i++){
 tmp = xnew[i]-xold[i];
 conv += tmp*tmp;
 }
 conv = sqrt((double)conv);

}

Typically over 4000 iterations!

For each iteration, copy to device
(3*Ndim+Ndim2)*sizeof(TYPE) bytes

For each iteration, copy from device
2*Ndim*sizeof(TYPE) bytes

For each iteration, copy to
device
2*Ndim*sizeof(TYPE) bytes

65

Target data directive
• The target data construct creates a target data region

… use map clauses for explicit data management

one or more target
regions work within the

target data region

#pragma omp target data map(to:A, B) map(from: C)
{

 #pragma omp target
 {do lots of stuff with A, B and C}

 {do something on the host}

 #pragma omp target
 {do lots of stuff with A, B, and C}

}

Data is mapped onto the
device at the beginning of

the construct

Data is mapped back to
the host at the end of the

target data region

66

Jacobi Solver (Par Target Data, 1/2)
#pragma omp target data map(tofrom:xold[0:Ndim],xnew[0:Ndim]) \
 map(to:A[0:Ndim*Ndim], b[0:Ndim] ,Ndim)
while((conv > TOL) && (iters<MAX_ITERS))
 { iters++;

#pragma omp target
#pragma omp loop private(j) firstprivate(xnew,xold)

for (i=0; i<Ndim; i++){
 xnew[i] = (TYPE) 0.0;

for (j=0; j<Ndim;j++){
 if(i!=j)
 xnew[i]+= A[i*Ndim + j]*xold[j];
 }
 xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
 }

67

Jacobi Solver (Par Target Data, 2/2)
// test convergence
conv = 0.0;
#pragma omp target map(tofrom: conv)
#pragma omp loop private(tmp) firstprivate(xnew,xold) reduction(+:conv)

for (i=0; i<Ndim; i++){
 tmp = xnew[i]-xold[i];
 conv += tmp*tmp;
 }
// end target region
 conv = sqrt((double)conv);

 TYPE* tmp = xold;
 xold = xnew;
 xnew = tmp;
} // end while loop

System Implementation Ndim = 4096
NVIDA®
K20X™
GPU

Target dir per loop 131.94 secs
Above plus target
data region

18.37 secs

Third party names are the property of their owners. 68

Single Instruction Multiple Data

• Individual work-items of a warp start together at the same program
address

• Each work-item has its own instruction address counter and register
state
– Each work-item is free to branch and execute independently
– Supports the SPMD pattern.

• Branch behavior
– Each branch will be executed serially
– Work-items not following the current branch will be disabled

69

A warp

Start Branch1 Branch2 Branch3 Converge

Time

Branching

Conditional execution
// Only evaluate expression
// if condition is met
if (a > b)
{
acc += (a - b*c);

}

Selection and masking
// Always evaluate expression
// and mask result
temp = (a - b*c);
mask = (a > b ? 1.f : 0.f);
acc += (mask * temp);

70

Coalescence
• Coalesce - to combine into one
• Coalesced memory accesses are

key for high bandwidth
• Simply, it means, if thread i

accesses memory location n then
thread i+1 accesses memory
location n+1

• In practice, it’s not quite as strict…

for (int id = 0; id < size; id++)
{
// ideal

float val1 = memA[id];

// still pretty good
const int c = 3;
float val2 = memA[id + c];

// stride size is not so good
float val3 = memA[c*id];

// terrible
const int loc =
 some_strange_func(id);

float val4 = memA[loc];
}

71

Jacobi Solver (Target Data/branchless/coalesced mem, 1/2)
#pragma omp target data map(tofrom:x1[0:Ndim],x2[0:Ndim]) \

 map(to:A[0:Ndim*Ndim], b[0:Ndim] ,Ndim)
while((conv > TOL) && (iters<MAX_ITERS))
 { iters++;
#pragma omp target
 #pragma omp loop private(j)

for (i=0; i<Ndim; i++){
 xnew[i] = (TYPE) 0.0;

for (j=0; j<Ndim;j++){
 xnew[i]+= (A[j*Ndim + i]*xold[j])*((TYPE)(i != j));
 }
 xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
 }

We replaced the original code with a
poor memory access pattern

xnew[i]+= (A[i*Ndim + j]*xold[j])
With the more efficient

xnew[i]+= (A[j*Ndim + i]*xold[j])
72

//
 // test convergence
 conv = 0.0;
#pragma omp target map(tofrom: conv)
 #pragma omp loop private(tmp) reduction(+:conv)

for (i=0; i<Ndim; i++){
 tmp = xnew[i]-xold[i];
 conv += tmp*tmp;
 }
conv = sqrt((double)conv);
 TYPE* tmp = xold;
 xold = xnew;
 xnew = tmp;
} // end while loop

System Implementation Ndim = 4096
NVIDA®
K20X™
GPU

Target dir per
loop

131.94 secs

Above plus
target data
region

18.37 secs

Above plus
reduced
branching

13.74 secs

Above plus
improved mem
access

7.64 secs

Jacobi Solver (Target Data/branchless/coalesced mem, 2/2)

Cray® XC40™ Supercomputer running Cray® Compiling Environment 8.5.3.
Intel® Xeon ® CPU E5-2697 v2 @ 2.70GHz with 32 GB DDR3. NVIDIA® Tesla® K20X, 6GB. Third party names are the property of their owners. 73

The loop construct is great, but sometimes you
want more control.

74

Our host/device Platform Model and OpenMP

Processing
Element

Device

……
…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

Target
construct to
get onto a

device

Teams construct to create a
league of teams with one team of

threads on each compute unit.

Distribute construct to assign
blocks of loop iterations to teams.

Parallel for simd
to run each block
of loop iterations

on the processing
elements

75

teams and distribute constructs

• The teams construct
– Similar to the parallel construct
– It starts a league of thread teams
– Each team in the league starts as one initial thread – a team of one
– Threads in different teams cannot synchronize with each other
– The construct must be “perfectly” nested in a target construct

• The distribute construct
– Similar to the for construct
– Loop iterations are workshared across the initial threads in a league
– No implicit barrier at the end of the construct
– dist_schedule(kind[, chunk_size])
– If specified, scheduling kind must be static
– Chunks are distributed in round-robin fashion in chunks of size chunk_size
– If no chunk size specified, chunks are of (almost) equal size; each team receives at least one chunk

76

Create a league of teams and distribute a loop among them

• teams construct
• distribute construct

• Transfer execution control to MULTIPLE device initial threads
• Workshare loop iterations across the initial threads.

host thread
device initial

threads

teams

#pragma omp target
#pragma omp teams
#pragma omp distribute
 for (i=0;i<N;i++)
 …

77

Create a league of teams and distribute a loop among them
and run each team in parallel with its partition of the loop

• teams distribute
• parallel for simd

• Transfer execution control to MULTIPLE device initial threads
– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team
– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread
teams

78

#pragma omp target
#pragma omp teams
#pragma omp distribute
#pragma omp parallel for simd
 for (i=0;i<N;i++)
 …

Create a league of teams and distribute a loop among them
and run each team in parallel with its partition of the loop

• teams distribute
• parallel for simd

• Transfer execution control to MULTIPLE device initial threads
– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team
– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread
teams

79

#pragma omp target
#pragma omp teams distribute
for (i=0;i<N;i++)
#pragma omp parallel for simd
 for (j=0;j<M;i++)
 …

Works with
nested loops

as well

80

SIMT Programming models: it’s more than just OpenMP
• CUDA:
– Released ~2006. Made GPGPU programming “mainstream” and continues to drive innovation in SIMT programming.
– Downside: proprietary to NVIDIA

• OpenCL:
– Open Standard for SIMIT programming created by Apple, Intel, NVIDIA, AMD, and others. 1st release in 2009.
– Supports CPUs, GPUs, FPGAs, and DSP chips. The leading cross platform SIMT model.
– Downside: extreme portability means verbose API. Painfully low level especially for the host-program.

• Sycl:
– C++ abstraction layer implements SIMT model with kernels as lambdas. Closely aligned with OpenCL. 1st release 2014
– Downside: Cross platform implementations only emerging recently.

• Directive driven programming models:
– OpenACC: they split from an OpenMP working group to create a competing directive driven API emphasizing descriptive

(rather than prescriptive) semantics.
– Downside: NOT an Open Standard. Controlled by NVIDIA.

– OpenMP: Mixes multithreading and SIMT. Semantics are prescriptive which makes it more verbose. A truly Open
standard supported by all the key GPU players.
– Downside: Poor compiler support so far … but that will change over the next couple years.

Third party names are the property of their owners

Vector addition with CUDA

// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < N) c[i] = a[i] + b[i];
}

int main () {
 int N = ... ;
 float *a, *b, *c;
 cudaMalloc (&a, sizeof(float) * N);
 // ... allocate other arrays (b and c), fill with data

 // Use thread blocks with 256 threads each
 vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);
}

81

Unified shared
memory … allocate
on host, visible on

device too

CUDA kernel as
function

Enqueue the kernel
to execute on the

Grid

Vector addition with SYCL

// Compute sum of length-N vectors: C = A + B
#include <CL/sycl.hpp>

int main () {
 int N = ... ;
 float *a, *b, *c;
 sycl::queue q;
 *a = (float *)sycl::malloc_shared(N * sizeof(float), q);
 // ... allocate other arrays (b and c), fill with data

 q.parallel_for(sycl::range<1>{N},
 [=](sycl::id<1> i) {
 c[i] = a[i] + b[i];

 });
 q.wait();
}

82

Create a queue
for SYCL

commands

Unified shared
memory … allocate
on host, visible on

device too

Kernel as a C++
Lambda function

 [=] means capture external
variables by value.

8383

Vector addition with OpenACC
•Let’s add two vectors together …. C = A + B

void vadd(int n,
 const float *a,
 const float *b,
 float *restrict c)
{
 int i;
 #pragma acc parallel loop
 for (i=0; i<n; i++)
 c[i] = a[i] + b[i];
}
int main(){
float *a, *b, *c; int n = 10000;
// allocate and fill a and b

 vadd(n, a, b, c);

}

Assure the
compiler that c is
not aliased with
other pointers

Turn the loop
into a kernel,

move data to a
device, and
launch the

kernel.

Host waits here
until the kernel is
done. Then the
output array c is
copied back to

the host.

84

A more complicated example:
Jacobi iteration: OpenACC (GPU)
#pragma acc data copy(A), create(Anew)
while (err>tol && iter < iter_max){
 err = 0.0;
 #pragma acc parallel loop reduction(max:err)
 for(int j=1; j< n-1; j++){
 for(int i=1; i<M-1; i++){
 Anew[j][i] = 0.25* (A[j][i+1] + A[j][i-1]+
 A[j-1][i] + A[j+1][i]);
 err = max(err,abs(Anew[j][i] – A[j][i]));
 }
 }
 #pragma acc parallel loop
 for(int j=1; j< n-1; j++){
 for(int i=1; i<M-1; i++){
 A[j][i] = Anew[j]i];
 }
 }
 iter ++;
}

Create a data region on
the GPU. Copy A once

onto the GPU, and
create Anew on the

device (no copy from
host)

Copy A back out to host
… but only once

Source: based on Mark Harris of NVIDIA®, “Getting Started with OpenACC”, GPU technology Conf., 2012

85

A more complicated example:
Jacobi iteration: OpenMP target directives
#pragma omp target data map(A) map(alloc:Anew)
while (err>tol && iter < iter_max){
 err = 0.0;
 #pragma target
 #pragma omp teams loop reduction(max:err)
 for(int j=1; j< n-1; j++){
 for(int i=1; i<M-1; i++){
 Anew[j][i] = 0.25* (A[j][i+1] + A[j][i-1]+
 A[j-1][i] + A[j+1][i]);
 err = max(err,abs(Anew[j][i] – A[j][i]));
 }
 }
 #pragma omp target
 #pragma omp teams loop
 for(int j=1; j< n-1; j++){
 for(int i=1; i<M-1; i++){
 A[j][i] = Anew[j]i];
 }
 }
 iter ++;
}

Create a data
region on the
GPU. Map A
and Anew onto

the target device

Copy A back out to host
… but only once

86

Why so many ways to do the same thing?
• The parallel programming model people have failed you …

– It’s more fun to create something new in your own closed-community that work across vendors to
create a portable API

• The hardware vendors have failed you …
– Don’t you love my “walled garden”? It’s so nice here, programmers, just don’t even think of going

to some other platform since your code is not portable.

• The standards community has failed you …
– Standards are great, but they move too slow. OpenACC stabbed OpenMP in the back and I’m

pissed, but their comments at the time were spot-on (OpenMP was moving so slow … they just
couldn’t wait).

• The applications community failed themselves …
– If you don’t commit to a standard and use “the next cool thing” you end up with the diversity of

overlapping options we have today. Think about what happened with OpenMP and MPI.

What does the future hold for parallel programming?

87

If you care about power, the world is heterogeneous?

Specialized
processors doing

operations suited to
their architecture
are more efficient

than general
purpose processors.

0

5

10

15

20

25

30
SGEMM GFLOP/Watt for different architectures

Source: Suyash Bakshi and Lennart Johnsson, “A Highly Efficient SGEMM Implementation using DMA on the Intel/Movidius Myriad-2. IEEE International
Symposium on Computer Architecture and High Performance Computing, 2020

Intel® MovidiusTM MyriadTM 2 VPU

Intel® Xeon® E5-2697v2 CPU,
3.5 GHz, 12 cores

Nvidia® K40TM GPU

Hence, future systems will be increasingly heterogeneous … GPUs, CPUs,
FPGAs, and a wide range of accelerators

GF
LO

PS
/W

at
t

Offload vs. Heterogeneous computing
• Offload: The CPU moves work to an accelerator and waits for the answer.

• Heterogeneous Computing: Run sub-problems in parallel on the hardware best suited to them.

Where are Tasks running?

On a CPU

On an Accelerator

Ru
n

Ti
m

e

CPU only

Offload

Heterogeneous
Computing

Example: Single-cell RNA-Seq benchmark (SCANPY)
• SCANPY … a widely used tool for studying gene expression. All data are elapsed time in seconds

• We started with results from an Nvidia blog (Example 2 from link), optimized code for one socket of Intel® Xeon® 8380
CPU and then “simulated” heterogeneous computing result by taking the faster of CPU and GPU execution times.

Pipeline stages 64 vCPUs
n1-highmem-64
(off-the-shelf Python)

A100 40Gb
(Clara Parabricks)

ICX-1s, 40 cores
(optimized by Intel)

“Simulated”
heterogeneous:
A100 & ICS-1s 40 cores

Data Loading & Preprocessing 1120 475 15.7 15.7

PCA 44 17.8 5.0 5.0

T-SNE 6509 37 205.6 37

K-means (single iteration) 148 2 7.1 2

KNN 154 62 59.8 59.8

UMAP 2571 21 84.5 21

Louvain clustering 1153 2.4 6.0 2.4

Leiden clustering 6345 1.7 28.4 1.7

Reanalysis of subgroup 255 17.9 22.5 17.9

Rest 39 49.2 49.0 49.0

End-to-End runtime 18338 686 483.6 211.5

https://github.com/clara-parabricks/rapids-single-cell-examples

Lessons learned:
• Be careful comparing

unoptimized python to
hand-tuned CUDA code

• GPUs are great. So are
CPUs if you fully utilize all
the cores and vector units.

• What you really want is the
best of both worlds. You
want heterogeneous
computing!

This column shows the potential of heterogenous computing. We ignored extra
communication and synchronization overhead, so actual runtimes would be slightly greater.

Clara Parabricks: Nvidia solution
stack built on RAPIDS for
healthcare applications

Third party names are the property of their owners

Source: Github repository as of Dec 16, 2020 - Example 2: Single-cell RNA-seq of 1.3 Million Mouse Brain Cells comparing CPU (n1-highmem-64 64 vCPUs) vs GPU (n1-highmem-
16. https://github.com/clara-parabricks/rapids-single-cell-examples. Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.
1S Ice Lake: See Backup for workloads and configurations. Results may vary.

github repository as of Dec 16, 2020

See Backup for workloads and
configurations. Results may vary.

Redacted

Imagine
mixing the
best of the

CPU and GPU
numbers.

What would
the

performance
look like?

https://github.com/clara-parabricks/rapids-single-cell-examples
https://github.com/clara-parabricks/rapids-single-cell-examples
https://github.com/clara-parabricks/rapids-single-cell-examples

Five Epochs of Distributed Computing*

91

Epoch
starting date

Defining limitations Application Interaction time and
Network performance

Capability

First
1970

Rare connections
to expensive
computers

FTP, telnet, email 100 ms
Low bandwidth high
latency

People to
computers

Second
1984

I/O wall, disks
can’t keep up

RPC,
Client Server

10 ms
10 mbps

Computer
to computer

Third
1990

Networking wall MPP HPC, three-
tier datacenter
networks

1 ms
100 mbs à 1 Gbs

Services to
services

Fourth
2000

Dennard scaling
wall … per core
plateau

Web search,
planet-scale
services

100 𝜇s
10 Gbps
flash

People to
people

Fifth
2015

Per socket wall
… accelerators
take off

Machine
Learning, data
centric computing

10 𝜇s
200 Gbps à 1 Tbps

People to
insights

*The five Epochs of distributed computing, Amin Vahdat of Google: SIGCOMM Lifetime achievement award keynote, 2020.

The Eight Fallacies of Distributed Computing
(Peter Deutsch of Sun Microsystems, 1994 … item 8 added in 1997 by James Gosling)

Essentially everyone, when they first build a distributed application,
makes the following eight assumptions. All prove to be false in the long
run and all cause big trouble and painful learning experiences.

1. The network is reliable
2. Latency is zero
3. Bandwidth is infinite
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is zero
8. The network is homogeneous

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

The Eight Fallacies of Distributed Computing
(Peter Deutsch of Sun Microsystems, 1994 … item 8 added in 1997 by James Gosling)

Essentially everyone, when they first build a distributed application,
makes the following eight assumptions. All prove to be false in the long
run and all cause big trouble and painful learning experiences.

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

1. The network is reliable
2. Latency is low and fixed
3. Bandwidth is high and fixed
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is negligible
8. The network is homogeneous

The Eight Fallacies of Distributed Computing
(Peter Deutsch of Sun Microsystems, 1994 … item 8 added in 1997 by James Gosling)

Essentially everyone, when they first build a distributed application,
makes the following eight assumptions. All prove to be false in the long
run and all cause big trouble and painful learning experiences.

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

1. The network is reliable
2. Latency is low and fixed
3. Bandwidth is high and fixed
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is negligible
8. The network is homogeneous

Cloud

X
X
X

X
X
X

X
X

1. The network is reliable
2. Latency is low and fixed
3. Bandwidth is high and fixed
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is negligible
8. The network is homogeneous

HPC Cluster

X

The three domains of parallel programming

Laptop or server HPC Cluster Cloud

Single Address Space
Distributed object store (in

memory) backed by a
persistent storage system

ProcessesThreads Microservices

Event driven tasks, FaaS,
and Actors

SPMDFork-join

Distributed memory, local
memory owned by individual

processes

Platform*

Memory

Execution Agent

Typical
Execution Pattern

Laptop/server and cluster models work
well together.

An impenetrable wall separates them
from the cloud-native world

The sixth Epoch of Distributed Computing

96

Epoch
starting date

Defining limitations Application Interaction time and Network
performance

Capability

First
1970

Rare connections to
expensive computers

FTP, telnet, email 100 ms
Low bandwidth high latency

People to
computers

Second
1984

I/O wall, disks can’t
keep up

RPC,
Client Server

10 ms
10 mbps

Computer to
computer

Third
1990

Networking wall MPP HPC, three-tier
datacenter networks

1 ms
100 mbs à 1 Gbs

Services to
services

Fourth
2000

Dennard Scaling Wall
… per core plateau

Web search, planet-scale
services

100 𝜇s
10 Gbps
flash

People to
people

Fifth
2015

Per socket wall …
accelerators take off

Machine Learning, data
centric computing

10 𝜇s
200 Gbps à 1 Tbps

People to
insights

Sixth
2025

Speed of light Dynamic, real-time AI,
integrated from data-center
to the edge with SDE*

100 ns
10 Tbs

People to
experiences

* SDE: Software defined Everything, i.e. software defined networking, software defined infrastructure, software
defined servers ... All at the same time … to dynamically construct systems to meet the needs of workloads.

Networking technology… replace generic data
center network with a cluster of cliques

97

SSD N
IC

SSD N
IC

SSD N
IC

SSD N
IC

SSDN
IC

SSDN
IC

SSDN
IC

SSDN
IC

A clique: A graph where every vertex is
connected to every other vertex

A Clique: a network of diameter
one with

O(¼N2) bisection bandwidth

Combine with next generation
optical networks to hit latencies

of 100 ns

Latencies every engineer should know …

98

L1 cache reference 1.5 ns
L2 cache reference 5 ns
Branch misprediction 6 ns
Uncontended mutex lock/unlock 20 ns
L3 cache reference 25 ns
Main memory reference 100 ns
“Far memory”/Fast NVM reference 1,000 ns (1us)
Read 1 MB sequentially from memory 12,000 ns (12 us)
SSD Random Read 100,000 ns (100 us)
Read 1 MB bytes sequentially from SSD 500,000 ns (500 us)
Read 1 MB sequentially from 10Gbps network 1,000,000 ns (1 ms)
Read 1 MB sequentially from disk 10,000,000 ns (10 ms)
Disk seek 10,000,000 ns (10 ms)
Send packet California→Netherlands→California (150 ms)

Source: The Datacenter as a Computer:
Designing Warehouse-Scale Machines, Luiz
Andre Barroso, Urs Holzle, Parthasarathy
Ranganathan, 3rd edition, Morgan & Claypool,
2019.

SSD NI
C

SSD NI
C

SSD NI
C

SSD NI
C

SSDNI
C

SSDNI
C

SSDNI
C

SSDNI
C

A cluster of nodes with a Clique
network topology and low latency
optical network…

Yields one hop network latencies
on par with DRAM access
latencies.

Take out the big stuff & you’re left with lots of µs overheads

99Source: Fig 1 from “Attack of the Killer Microseconds”, Barroso, Marty, Patterson, and Ranganathan, Comm ACM vol 60, # 4, p. 48, 2017

All those SW overheads add up … like bricks that combine to build a networking-wall …
turning a 2 µs network into a 100 µs network…

Computer Scientists need to rethink system SW stacks to minimize latencies … fast
RDMA, reduce sync contention, low latency interrupt handlers, and more …. All to hit

O(µs) latencies.

In the sixth Epoch of Distributed Computing, cloud
and cluster overlap … or even merge!

Cloud HPC Cluster

1. The network is reliable
2. Latency is low and fixed
3. Bandwidth is high and fixed
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is negligible
8. The network is homogeneous

X

X
X
X
X
X

Chip-to-chip optical
networks push latency down
and bandwidth up

Data Streaming Accelerator
reduces tail latency.

P4/P5/P6 + Infrastructure
Processing Units drive down
latency and reduces jitter

With Low Latencies, high bandwidths and stable performance, we can do loosely synchronous and synchronous
applications in the cloud. The economics of the cloud vs dedicated HPC clusters means the cloud will dominate HPC

HPC applications will need to change to deal with reliability and network inhomogeneities.

The three domains of parallel programming

Laptop or server HPC Cluster Cloud

Single Address Space
Distributed object store (in

memory) backed by a
persistent storage system

ProcessesThreads Microservices

Event driven tasks, FaaS,
and Actors

SPMDFork-join

Distributed memory, local
memory owned by individual

processes

Platform*

Memory

Execution Agent

Typical
Execution Pattern

Advances in networking technology plus
low-overhead software stacks optimized

to reduce tail-latency will shatter this wall

The three domains of parallel programming

Laptop or server HPC Cluster Cloud

Single Address Space
Distributed object store (in

memory) backed by a
persistent storage system

ProcessesThreads Microservices

Event driven tasks, FaaS,
and Actors

SPMDFork-join

Distributed memory, local
memory owned by individual

processes

Platform*

Memory

Execution Agent

Typical
Execution Pattern

There will always be a need for top-end scalable systems in
supercomputer centers, but economics will push the bulk of

scientific computing into the cloud.

§ Application task-groups à microservices
§ Data structures à distributed object store
§ Durable store: Persistent cloud store (e.g. S3)

§ Application task-groups à processes
§ Data structures à process memory
§ Durable Store: Cluster file system

§ Applications task-groups à threads
§ Data structures à process heap
§ Durable store: local file system

One codebase à many systems

Application Program:
High-level Algebra + Core Patterns

Application Program source code:

Software generator
Hardware cost

model

Cloud Native HPC Laptop/ServerHPC Cluster

§ Performance, Productivity AND Portability … the database
people “did it” with relational algebras and SQL.

§ We can do it too with algebras over distributed data
structures … that is a set of operators over values
expressed in terms of our distributed data structures.

§ If we get it right, we’ll have … declarative semantics that a
software generator can turn into laptop, cluster or cloud
programs.

Intention Adaptation

InventionData Data

Data

*

*This is the logo of the machine programming research program I help lead inside Intel Labs

104

The Three Pillars of Machine Programming (MP)

Justin Gottschlich, Intel Labs
Armando Solar-Lezama, MIT
Nesime Tatbul, Intel Labs
Michael Carbin, MIT
Martin Rinard, MIT
Regina Barzilay, MIT
Saman Amarasinghe, MIT
Joshua B Tenenbaum, MIT
Tim Mattson, Intel Labs

Intention

Invention DataData

Data

Adaptation

• MP is the automation of software development
– Intention: Discover the intent of a programmer
– Invention: Create new algorithms and data structures
– Adaptation: Evolve in a changing hardware/software world

Summarized ~90 works.

Key efforts by Berkeley,
Google, Microsoft, MIT,
Stanford, UW and others.

ACM SIGPLAN Workshop on Machine Learning and Programming Languages (MAPL), PLDI’18, arxiv.org/pdf/1803.07244.pdf

oneAPI: A bridge to our heterogeneous/Distributed Future

oneAPI languages
Sycl, OpenMP, TBB + common high-level APIs

Partitioned Global Address Space
OpenSHMEM or MPI 3 one-sided communication

Distributed Data Structures
A collection of distributed data containers for common structures

Machine Programming
Radical portability across distributed systems

Research

A foundation of solid
oneAPI engineering

My vision for how we bring oneAPI into a future dominated by power-optimized heterogenous chips
organized into distributed systems.

The key to making this work … the programmer is in
control and chooses the level of abstraction based on the
programming task.

Summary

• Parallel computing is fun … but it can be hard.
• Fortunately, if you stick to the Big-3 and the core patterns of parallel

computing for HPC, it’s not too overwhelming
• The big 3: MPI, OpenMP, and “a GPU programming model”
• Key Patterns: SPMD, loop level parallelism, geometric decomposition, divide

and conquer, and SIMT

• Some day we’ll automate the hard-parts with Machine Programming,
but that may be 10 years!!!!

SCANPY workload details and system configuration

• The following was done to optimize the
SCANPY benchmark

• Data preprocessing - used warm file cache and
multi-threaded using Numba JIT

• PCA, K-means, KNN – Used the Intel extension for
scikit-learn.

• t-SNE - Used optimized version from Intel’s oneDAL
Library.

• Parallelized quadtree building, sorting and
summarization steps using Morton codes.

• UMAP - optimized the UMAP code using
AVX512/AVX2. Used MKL for eigenvalue
computation.

• Louvain and Leiden algorithms – collaborated with
Katana Graph to get well optimized versions
and integrated them into SCANPY.

ame Intel® Xeon® Platinum 8380
Time Jan 20, 2022
Manufacturer Intel Corporation
Product Name Intel® Xeon® Platinum 8380

BIOS Version
SE5C6200.86B.0020.P23.21032613
09

OS
Rocky Linux release 8.5 (Green
Obsidian)

Kernel 4.18.0-240.22.1.el8_3.crt6.x86_64
Microcode 0xd000270
IRQ Balance enabled

CPU Model
Intel(R) Xeon(R) Platinum 8380
CPU @ 2.30GHz

Base Frequency 2.3GHz
Maximum
Frequency 3.4GHz
All-core
Maximum
Frequency 2.5GHz
CPU(s) 40
Thread(s) per
Core 2
Core(s) per
Socket 40

Socket(s) 1
NUMA Node(s) 1
Prefetchers
Turbo Enabled
PPIN(s)
Power & Perf
Policy Performance
TDP 270 watts
Frequency Driver
Frequency
Governer Performance
Frequency (MHz)
Max C-State

Installed

Intel® Xeon® Platinum 8380
40c D1 DDR4
16*16GB@3200MHz -
Mellanox HDR

Huge Pages Size 2048 kB
Transparent
Huge Pages Always
Automatic
NUMA Balancing Enabled

