
Machine learning at CoDaS-HEP 2024

Jim Pivarski

Princeton University – IRIS-HEP

July 25, 2024

1 / 26

Now we have two ways to make computer programs

Craftsmanship

▶ Programming “by hand”

▶ Allows for precise control

▶ Complexity limited by a human mind
or a team’s ability to communicate

Farming

▶ Machine learning

▶ Allows for extremely nuanced solutions

▶ Still needs human help to steer it
toward the “right” solution

2 / 26

Machine learning in a nutshell

Write an algorithm that generates output that depends on a huge
number of internal parameters.

Vary those parameters until the algorithm returns the expected
result (supervised learning) or until it finds patterns according to
some desired metric (unsupervised learning).

Then use the trained algorithm on new problems.

If this sounds like fitting data with a function, you’re right.

3 / 26

Machine learning in a nutshell

Write an algorithm that generates output that depends on a huge
number of internal parameters.

Vary those parameters until the algorithm returns the expected
result (supervised learning) or until it finds patterns according to
some desired metric (unsupervised learning).

Then use the trained algorithm on new problems.

If this sounds like fitting data with a function, you’re right.

3 / 26

Machine learning in a nutshell

Write an algorithm that generates output that depends on a huge
number of internal parameters.

Vary those parameters until the algorithm returns the expected
result (supervised learning) or until it finds patterns according to
some desired metric (unsupervised learning).

Then use the trained algorithm on new problems.

If this sounds like fitting data with a function, you’re right.

3 / 26

Machine learning in a nutshell

Write an algorithm that generates output that depends on a huge
number of internal parameters.

Vary those parameters until the algorithm returns the expected
result (supervised learning) or until it finds patterns according to
some desired metric (unsupervised learning).

Then use the trained algorithm on new problems.

If this sounds like fitting data with a function, you’re right.

3 / 26

Goals of this mini-course

1. Understand how your physics background prepares you for
machine learning.

2. Don’t approach it as a black box/dark art.

3. Get a little familiar with some common tools and techniques.

4 / 26

A very brief history of HEP and ML

Main point: High Energy Physics
(HEP) has always needed
Machine Learning (ML).

It’s just becoming possible now.

5 / 26

First HEP experiments adopted computers in a major way

Late 1940’s—early 1950’s was the “beginning” of HEP as we know it:

▶ Accelerators provided higher energy with higher flux than observed in nature.

▶ Collisions with fixed targets produced new particles to discover.

▶ Computers quantified particle trajectories, reconstructed invisible (neutral)
particles, and rejected backgrounds.

Example: Luis Alvarez’s group $9M accelerator, $2M bubble chamber, $0.2M IBM 650.

6 / 26

Identifying tracks was beyond the capabilities of software

Madeleine (née Goldstein)
Isenberg, UCLA class of ’65

“We scanners would review each
frame of film, and per the brief
instructions we had been given,
looked for any ‘unusual activity.’

“The scanner had to use both
hands, a joystick in each, and turn
them clockwise or anti-clockwise,
to align a double crosshair cursor
at several sequential positions on
a track.”

https://www.physics.ucla.edu/
marty/HighEnergyPhysics.pdf

7 / 26

https://www.physics.ucla.edu/marty/HighEnergyPhysics.pdf
https://www.physics.ucla.edu/marty/HighEnergyPhysics.pdf

Fast pattern recognition tasks are an essential part of HEP

Detectors make
uninterpreted
event displays.

Raw signals must
be interpreted as
particles.

Capacity for
discovery scales
with the number
of interpreted
events.

8 / 26

Fast pattern recognition tasks are an essential part of HEP

e⁺
e⁻

π⁺

μ⁺

K⁰₁

π⁻
 π⁻
(or K⁻)

π⁺

e⁺

K⁺

π⁻

Detectors make
uninterpreted
event displays.

Raw signals must
be interpreted as
particles.

Capacity for
discovery scales
with the number
of interpreted
events.

8 / 26

Fast pattern recognition tasks are an essential part of HEP

e⁺
e⁻

π⁺

μ⁺

K⁰₁

π⁻
 π⁻
(or K⁻)

π⁺

e⁺

K⁺

π⁻

Detectors make
uninterpreted
event displays.

Raw signals must
be interpreted as
particles.

Capacity for
discovery scales
with the number
of interpreted
events.

8 / 26

Pattern recognition had to be automated to reach today’s rates

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

1950 1960 1970 1980 1990 2000 2010 2020 2030

ev
en

ts
 p

er
 s

ec
on

d

UA1

CDF
(run 1)

DØ
(run 2)

ATLAS
& CMS
(run 1)

LHCb
(run 1) ATLAS

& CMS
(run 2)

ATLAS, CMS,
& LHCb (HL-LHC)

first fully
automated

9 / 26

Until recently, most HEP pattern-recognition consisted of
hand-written heuristics, rather than ML (some still is).

The history of Artificial Intelligence (AI) is also split between what
we would now call hand-written algorithms and learned algorithms.

10 / 26

Until recently, most HEP pattern-recognition consisted of
hand-written heuristics, rather than ML (some still is).

The history of Artificial Intelligence (AI) is also split between what
we would now call hand-written algorithms and learned algorithms.

10 / 26

Symbolic AI versus Connectionist AI

Symbolic

▶ Symbol manipulation and logic

▶ Searches through problem-space

▶ Hand-written common-sense rules

Examples: parsing, theorem-proving,
chess-playing, expert systems

Connectionist

▶ Stimulus correlated to response only
by strengths of internal connections

▶ No explicit symbols or rules

▶ Effective symbols/rules may arise

Examples: neural networks
11 / 26

Connectionism started early

Theory: Pitts & McCullock (1943).

Rosenblatt’s perceptron machine
(1958) attempted to recognize images
of letters by adjusting free parameters
with motors.

Made extravagant claims; reality hit hard.
12 / 26

The ups and downs of AI: as mentioned in books

13 / 26

The ups and downs of AI: according to Henry Kautz (funding)

13 / 26

The ups and downs of AI: in conference attendance

14 / 26

The ups and downs of AI: among physicists at CHEP

15 / 26

Machine learning techniques that are not neural networks:

▶ Naive Bayes classifier

▶ k-nearest neighbors

▶ Principal Component Analysis (PCA)

▶ generalized additive models, LOWESS fitting

▶ decision trees, (boosted) random forests, AdaBoost

▶ k-means clustering, Gaussian processes, hierarchical clustering

▶ Support Vector Machines (SVMs)

▶ Hidden Markov Models (HMM)

▶ and many more!

(These are techniques I learned about and used when I was a data scientist, up to 2015,
just before the deep learning boom.)

16 / 26

Machine learning techniques that are not neural networks:

▶ Naive Bayes classifier

▶ k-nearest neighbors

▶ Principal Component Analysis (PCA)

▶ generalized additive models, LOWESS fitting

▶ decision trees, (boosted) random forests, AdaBoost

▶ k-means clustering, Gaussian processes, hierarchical clustering

▶ Support Vector Machines (SVMs)

▶ Hidden Markov Models (HMM)

▶ and many more!

(These are techniques I learned about and used when I was a data scientist, up to 2015,
just before the deep learning boom.)

16 / 26

In this mini-course, we’ll only cover neural networks.

(There’s enough to talk about.)

17 / 26

In this mini-course, we’ll only cover neural networks.

(There’s enough to talk about.)

17 / 26

The rest of this PDF talk: what is a neural network?

Switch to Jupyter: why does a neural network work?

18 / 26

Simplest neural network is a linear fit

b

rise

run

a =
rise
run+

++
+++

+

++
+

++ +
+

+
++

+ +++
+

x

y

f

a

︸ ︷︷ ︸
free parameters in the fit

·

x

︸ ︷︷ ︸
input values

+

b1

b2

b

b4

b5

︸ ︷︷ ︸
free parameters

=

y1

y2

y

y4

y5

︸ ︷︷ ︸
output values

=

f [a1,1x1 + a1,2x2 + . . . a1,10x10 + b1]

f [a2,1x1 + a2,2x2 + . . . a2,10x10 + b2]

f [

ax + b

]

f [a4,1x1 + a4,2x2 + . . . a4,10x10 + b4]

f [a5,1x1 + a5,2x2 + . . . a5,10x10 + b5]

19 / 26

Simplest neural network is a linear fit

+x1

‒x1

+x2

‒x2

+y

‒y

f

a1,1 a1,2 . . . a1,10

a2,1 a2,2 . . . a2,10

a1 a2

. . . a10

a4,1 a4,2 . . . a4,10

a5,1 a5,2 . . . a5,10

︸ ︷︷ ︸

free parameters in the fit

·

x1

x2

...

x10

︸ ︷︷ ︸
input values

+

b1

b2

b

b4

b5

︸ ︷︷ ︸
free parameters

=

y1

y2

y

y4

y5

︸ ︷︷ ︸
output values

=

f [a1,1x1 + a1,2x2 + . . . a1,10x10 + b1]

f [a2,1x1 + a2,2x2 + . . . a2,10x10 + b2]

f [

a1x1 + a2x2

+ . . . a10x10

+ b

]

f [a4,1x1 + a4,2x2 + . . . a4,10x10 + b4]

f [a5,1x1 + a5,2x2 + . . . a5,10x10 + b5]

19 / 26

Simplest neural network is a linear fit

f

a1,1 a1,2 . . . a1,10

a2,1 a2,2 . . . a2,10

a1 a2 . . . a10

a4,1 a4,2 . . . a4,10

a5,1 a5,2 . . . a5,10

︸ ︷︷ ︸

free parameters in the fit

·

x1

x2
...

x10

︸ ︷︷ ︸
input values

+

b1

b2

b

b4

b5

︸ ︷︷ ︸
free parameters

=

y1

y2

y

y4

y5

︸ ︷︷ ︸
output values

=

f [a1,1x1 + a1,2x2 + . . . a1,10x10 + b1]

f [a2,1x1 + a2,2x2 + . . . a2,10x10 + b2]

f [

a1x1 + a2x2 + . . . a10x10 + b

]

f [a4,1x1 + a4,2x2 + . . . a4,10x10 + b4]

f [a5,1x1 + a5,2x2 + . . . a5,10x10 + b5]

19 / 26

Simplest neural network is a linear fit

f

a1,1 a1,2 . . . a1,10

a2,1 a2,2 . . . a2,10

a3,1 a3,2 . . . a3,10

a4,1 a4,2 . . . a4,10

a5,1 a5,2 . . . a5,10

︸ ︷︷ ︸

free parameters in the fit

·

x1

x2
...

x10

︸ ︷︷ ︸
input values

+

b1

b2

b3

b4

b5

︸ ︷︷ ︸
free parameters

=

y1

y2

y3

y4

y5

︸ ︷︷ ︸
output values

=

f [

a1,1x1 + a1,2x2 + . . . a1,10x10 + b1

]

f [

a2,1x1 + a2,2x2 + . . . a2,10x10 + b2

]

f [

a3,1x1 + a3,2x2 + . . . a3,10x10 + b3

]

f [

a4,1x1 + a4,2x2 + . . . a4,10x10 + b4

]

f [

a5,1x1 + a5,2x2 + . . . a5,10x10 + b5

]

19 / 26

Next-simplest passes it through a non-linear function f

f

a1,1 a1,2 . . . a1,10

a2,1 a2,2 . . . a2,10

a3,1 a3,2 . . . a3,10

a4,1 a4,2 . . . a4,10

a5,1 a5,2 . . . a5,10

︸ ︷︷ ︸

free parameters in the fit

·

x1

x2
...

x10

︸ ︷︷ ︸
input values

+

b1

b2

b3

b4

b5

︸ ︷︷ ︸
free parameters

=

y1

y2

y3

y4

y5

︸ ︷︷ ︸
output values

=

f [a1,1x1 + a1,2x2 + . . . a1,10x10 + b1]

f [a2,1x1 + a2,2x2 + . . . a2,10x10 + b2]

f [a3,1x1 + a3,2x2 + . . . a3,10x10 + b3]

f [a4,1x1 + a4,2x2 + . . . a4,10x10 + b4]

f [a5,1x1 + a5,2x2 + . . . a5,10x10 + b5]

19 / 26

The non-linear function f is called an “activation function”

binary step

f (x) =

{
0 if x < 0
1 if x ≥ 0

rectified linear unit (ReLU)

f (x) =

{
0 if x < 0
x if x ≥ 0

logistic (soft step)

f (x) =
1

1 + e−x

“leaky” ReLU

f (x) =

{
αx if x < 0
x if x ≥ 0

hyperbolic tangent

f (x) =
ex − e−x

ex + e−x

sigmoid linear unit (“swish”)

f (x) =
x

1 + e−x

There are many choices, but ReLU is the simplest and most common.

20 / 26

Neural networks take inspiration from neurons in the brain

x1x2

x3
x4

x5

x6

x7
x8 x9

x10

y1 y2

y3

y4
y5

input signals

x1, x2, ..., x10

output signals

y1, y2, y3, y4, y5

f

a1,1 a1,2 . . . a1,10

a2,1 a2,2 . . . a2,10

a3,1 a3,2 . . . a3,10

a4,1 a4,2 . . . a4,10

a5,1 a5,2 . . . a5,10

︸ ︷︷ ︸

free parameters in the fit

·

x1

x2
...

x10

︸ ︷︷ ︸
input values

+

b1

b2

b3

b4

b5

︸ ︷︷ ︸

free parameters

=

y1

y2

y3

y4

y5

︸ ︷︷ ︸
output values

=

f [a1,1x1 + a1,2x2 + . . . a1,10x10 + b1]

f [a2,1x1 + a2,2x2 + . . . a2,10x10 + b2]

f [a3,1x1 + a3,2x2 + . . . a3,10x10 + b3]

f [a4,1x1 + a4,2x2 + . . . a4,10x10 + b4]

f [a5,1x1 + a5,2x2 + . . . a5,10x10 + b5]

21 / 26

Neural networks take inspiration from neurons in the brain

22 / 26

Neural networks take inspiration from neurons in the brain

input signals

x1, x2, ..., x10

output signals

y1, y2, y3, y4, y5

23 / 26

Neural networks take inspiration from neurons in the brain

To do the same thing with our model, take the output of one “activation + linear
transform” and use it as the input to the next:

f
(
alayer 1i, j · xj + blayer 1i

)

Without the activation functions, we’d lose the structure: linear transformations of
linear transformations collapse down to a single linear transformation.

24 / 26

Neural networks take inspiration from neurons in the brain

To do the same thing with our model, take the output of one “activation + linear
transform” and use it as the input to the next:

f

(
alayer 2i, j · f

(
alayer 1i, j · xj + blayer 1i

)
+ blayer 2i

)

Without the activation functions, we’d lose the structure: linear transformations of
linear transformations collapse down to a single linear transformation.

24 / 26

Neural networks take inspiration from neurons in the brain

To do the same thing with our model, take the output of one “activation + linear
transform” and use it as the input to the next:

f

(
alayer 3i, j · f

(
alayer 2i, j · f

(
alayer 1i, j · xj + blayer 1i

)
+ blayer 2i

)
+ blayer 3i

)

Without the activation functions, we’d lose the structure: linear transformations of
linear transformations collapse down to a single linear transformation.

24 / 26

Neural networks take inspiration from neurons in the brain

To do the same thing with our model, take the output of one “activation + linear
transform” and use it as the input to the next:

f

alayer 4i, j · f

(
alayer 3i, j · f

(
alayer 2i, j · f

(
alayer 1i, j · xj + blayer 1i

)
+ blayer 2i

)
+ blayer 3i

)
+ blayer 4i

Without the activation functions, we’d lose the structure: linear transformations of
linear transformations collapse down to a single linear transformation.

24 / 26

Neural networks take inspiration from neurons in the brain

To do the same thing with our model, take the output of one “activation + linear
transform” and use it as the input to the next:

f

alayer 4i, j · f

(
alayer 3i, j · f

(
alayer 2i, j · f

(
alayer 1i, j · xj + blayer 1i

)
+ blayer 2i

)
+ blayer 3i

)
+ blayer 4i

Without the activation functions, we’d lose the structure: linear transformations of
linear transformations collapse down to a single linear transformation.

24 / 26

It’s usually drawn like this

input signals

x1, x2, ..., x8

output signals

y1, y2, y3, ..., y6

The lines indicate that every output from one layer is included in the linear
transformation of the next layer. (“There’s an ai, j for every xj and yi .”)

25 / 26

It’s usually drawn like this

input signals

x1, x2, ..., x8

output signals

y1, y2, y3, ..., y6

x1
L1

x2
L1

x3
L1

x4
L1

x5
L1

x6
L1

x7
L1

x8
L1

x1
L2

x2
L2

x3
L2

x4
L2

x5
L2

x6
L2

x7
L2

x1
L3

x2
L3

x3
L3

x4
L3

x5
L3

x6
L3

x7
L3

x8
L3

x9
L3

y1

y2

y3

y4

y5

y6

ai,j
L1‒L2 ai,j

L2‒L3 ai,j
L3‒L4

The lines indicate that every output from one layer is included in the linear
transformation of the next layer. (“There’s an ai, j for every xj and yi .”)

25 / 26

But. . . why does that work?

What’s so special about this linear-nonlinear sandwich?

(Time to switch to Jupyter.)

26 / 26

But. . . why does that work?

What’s so special about this linear-nonlinear sandwich?

(Time to switch to Jupyter.)

26 / 26

