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Now we have two ways to make computer programs

Craftsmanship Farming

» Programming “by hand” » Machine learning
» Allows for precise control » Allows for extremely nuanced solutions
» Complexity limited by a human mind » Still needs human help to steer it

or a team’s ability to communicate toward the “right” solution
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Machine learning in a nutshell Y-

Write an algorithm that generates output that depends on a huge
number of internal parameters.
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Machine learning in a nutshell

Write an algorithm that generates output that depends on a huge
number of internal parameters.

Vary those parameters until the algorithm returns the expected
result (supervised learning) or until it finds patterns according to
some desired metric (unsupervised learning).

Then use the trained algorithm on new problems.

If this sounds like fitting data with a function, you're right.
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Goals of this mini-course

1. Understand how your physics background prepares you for
machine learning.

2. Don't approach it as a black box/dark art.

3. Get a little familiar with some common tools and techniques.
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A very brief history of HEP and ML

Main point: High Energy Physics
(HEP) has always needed
Machine Learning (ML).

It's just becoming possible now.
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First HEP experiments adopted computers in a major way

Late 1940's—early 1950's was the “beginning” of HEP as we know it:

» Accelerators provided higher energy with higher flux than observed in nature.
» Collisions with fixed targets produced new particles to discover.

» Computers quantified particle trajectories, reconstructed invisible (neutral)
particles, and rejected backgrounds.

Example: Luis Alvarez's group $9M accelerator, $2M bubble chamber, $0.2M IBM 650.

« -
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|dentifying tracks was beyond the capabilities of software &

Madeleine (née Goldstein)
Isenberg, UCLA class of '65

“We scanners would review each
frame of film, and per the brief

instructions we had been given,
looked for any ‘unusual activity.’

“The scanner had to use both
hands, a joystick in each, and turn
them clockwise or anti-clockwise,
to align a double crosshair cursor
at several sequential positions on
a track.”

https://www.physics.ucla.edu/
marty/HighEnergyPhysics.pdf



https://www.physics.ucla.edu/marty/HighEnergyPhysics.pdf
https://www.physics.ucla.edu/marty/HighEnergyPhysics.pdf

Fast pattern recognition tasks are an essential part of HEP

Detectors make
uninterpreted
event displays.
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Fast pattern recognition tasks are an essential part of HEP

Detectors make
uninterpreted
event displays.

Raw signals must

be interpreted as
particles.
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Detectors make
uninterpreted
event displays.

Raw signals must
be interpreted as
particles.

Capacity for
discovery scales
with the number
of interpreted
events.

Fast pattern recognition tasks are an essential part of HEP
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Pattern recognition had to be automated to reach today's rates
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Until recently, most HEP pattern-recognition consisted of
hand-written heuristics, rather than ML (some still is).
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Until recently, most HEP pattern-recognition consisted of
hand-written heuristics, rather than ML (some still is).

The history of Artificial Intelligence (Al) is also split between what
we would now call hand-written algorithms and learned algorithms.
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Symbolic Al versus Connectionist Al

Symbolic Connectionist

» Symbol manipulation and logic » Stimulus correlated to response only
> Searches through problem-space by strengths of internal connections
. | 4 il
» Hand-written common-sense rules No explicit symbols or rules
_ . : » Effective symbols/rules may arise
Examples: parsing, theorem-proving,
chess-playing, expert systems Examples: neural networks
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Connectionism started early
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The ups and downs of Al: as mentioned in
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The ups and downs of Al: in conference attendance

Attendance of large Al conferences
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The ups and downs of Al: among physicists at CHEP
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Machine learning techniques that are not neural networks:

VVvVvVvyVyVyVYYVYYVYY

Naive Bayes classifier

k-nearest neighbors

Principal Component Analysis (PCA)

generalized additive models, LOWESS fitting

decision trees, (boosted) random forests, AdaBoost

k-means clustering, Gaussian processes, hierarchical clustering
Support Vector Machines (SVMs)

Hidden Markov Models (HMM)

and many more!
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Machine learning techniques that are not neural networks: &

Naive Bayes classifier

k-nearest neighbors

Principal Component Analysis (PCA)

generalized additive models, LOWESS fitting

decision trees, (boosted) random forests, AdaBoost

k-means clustering, Gaussian processes, hierarchical clustering
Support Vector Machines (SVMs)

Hidden Markov Models (HMM)

and many more!

VVvVvVvyVyVyVYYVYYVYY

(These are techniques | learned about and used when | was a data scientist, up to 2015,
Just before the deep learning boom.)
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In this mini-course, we'll only cover neural networks.
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o @

In this mini-course, we'll only cover neural networks.

(There's enough to talk about.)
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o @

The rest of this PDF talk: what is a neural network?

Switch to Jupyter: why does a neural network work?

18/26



Simplest neural network is a linear fit

a cX + b = y = ax+b

—_—— — ) N — N

free parameters in the fit input values  free parameters output values
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Simplest neural

ER a»

network is a linear fit

—X;

+X;

X1 -y

X2

free parameters in the fit

—_—

input values free parameters

—X5

y = aixi + axxz

output values

+b
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Simplest neural network is a linear fit

X1
X2
a ar .. aio . . + b = y = aix1 + axxp +...aoxw0 + b
X10
——— N — ——
free parameters in the fit input values free parameters output values
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Simplest neural network is a linear fit

a1 a2 ... a0 X by y1 ar,1x1 +aiexe + ... a1,10x10 + b1

a1 a2 ... @210 X b2 y2 az,;1x1 + az2xe + ... a2,10x10 + b2

a1 a2 ... aswo |- ) + b3 = » = a31x1+az2x2+...a310x10 + b3

as1l  a42 ... 3410 ' by Ya ag1x1 +ag2xe + ... a4,10x10 + ba

a1 a2 ... 3510 x10 bs Y5 as,1x1 + as2x2 + ... as 10x10 + bs
free parameters in the fit m fms m;
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Next-simplest passes it through a

non-linear function f

ai
a1
f as;1
a1

as 1

ai2
a2
as2
as2

as,2

a1,10
a2,10
a3,10
34,10

as,10

X1 by
Xo by
+ bs

by

X10 bs

free parameters in the fit

——— N —
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y1
Y2

y3
ya

Y5
N e

output values

f[al’lxl +arexe+ ...
flazix1 + azoxo + ...
f[a371x1 +azoxot+ ...
flas1x1 + as2x0 + ..

flas,1x1 + as2x2 + ..

ai,10x10 + bi1]
a,10x10 + bo]

as,10x10 + b3]

. a4,10x10 + ba]

. a5,10x10 + bs]

19/26



The non-linear function f is called an “activation function”

binary step

if x <0

f(x)—{g if x>0

logistic (soft step)

hyperbolic tangent

eX —e X

eX +e X

f(x) =

rectified linear unit (ReLU)

f(x):{ 0 ifx<0

x ifx>0

“leaky” RelLU
ax ifx<0
Fx) = { x ifx>0

sigmoid linear unit (“swish")

There are many choices, but ReLU is the simplest and most common.
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Neural networks take inspiration from

neurons in the brain

o @
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21/26



e N A

Neural networks take inspiration from neurons in the brain @
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Neural networks take |nsp|rat|on from neurons in the brain

N ’ )
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c o c 5 c L
Neural networks take inspiration from neurons in the brain &

To do the same thing with our model, take the output of one “activation + linear
transform” and use it as the input to the next:

layer 1 . layer 1
f (a,-,j - Xj + b; )
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c o c 5 c L
Neural networks take inspiration from neurons in the brain &

To do the same thing with our model, take the output of one “activation + linear
transform” and use it as the input to the next:

layer 2 layer 1 . layer 1 layer 2
f(ai'j A F (g4 ] + b}
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Neural networks take inspiration from neurons in the brain

To do the same thing with our model, take the output of one “activation + linear
transform” and use it as the input to the next:

f (al'ai'er 3. £ <al'a)}er 2 f (aliai_er 1 X + b:.ayer 1) + b}ayer 2> + bl'ayer 3)
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Neural networks take inspiration from neurons in the brain

To do the same thing with our model, take the output of one “activation + linear
transform” and use it as the input to the next:

Y i i i J i

f aIayer 4 f (alayer 3. f <a|ayer 2 f (alayer 1 - Xj + bl'ayer 1) + b[ayer 2) + bl'ayer 3> + b[ayer 4
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Neural networks take inspiration from neurons in the brain

To do the same thing with our model, take the output of one “activation + linear
transform” and use it as the input to the next:

Y i

f aIayer 4 f (alayer 3.

(s

layer 2
in

f(a

layer 1
i’j

Xj+ b

layer 1
i

)

+b

layer 2

+ bl'ayer 3>

+b

Without the activation functions, we'd lose the structure: linear transformations of
linear transformations collapse down to a single linear transformation.

layer 4

24/26



It's usually drawn like this
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The lines indicate that every output from one layer is included in the linear

transformation of the next layer. (“There's an a;, ; for every x; and y;.")
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It's usually drawn like this
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transformation of the next layer. (“There's an a;, ; for every x; and y;.")
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But. .. why does that work?

What's so special about this linear-nonlinear sandwich?
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But. .. why does that work?

What's so special about this linear-nonlinear sandwich?

(Time to switch to Jupyter.)
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