
Floating Point Arithmetic is not Real

Tim Mattson

Acknowledgements: I borrowed heavily from lectures on floating point arithmetic by Ianna Osborne and Wahid Redjeb.

Should we trust computer arithmetic?
Sleipner Oil Rig Collapse (8/23/91). Loss: $700 million.

See http://www.ima.umn.edu/~arnold/disasters/sleipner.html

Linear elastic model using NASTRAN underestimated shear
stresses by 47% resulted in concrete walls that were too thin.

$1.6 Billion in
2024 dollars

NASTRAN is the world’s
most widely used finite

element code … in heavy
use since 1968

Outline
• Numbers for humans. Numbers for computers
• Finite precision, floating point numbers
– General case
– IEEE 754 floating point standard

• Working with IEEE 754 floating point arithmetic
– Addition
– Subtraction
– Rounding

• Wrap-up/Conclusion
• Additional Content
– Numerical Analysis
– Changing numbers of bits
– Compiler options
– A Few Exercises
– Exercises
– Solutions

3

Numbers for Humans

4

Real Numbers: viewed as points on a line … pairs of real numbers can be arbitrarily close

Numbers for Humans

5

For the arithmetic operators, real numbers define a closed set … for well defined operations and any input
real numbers, the arithmetic operation returns a real number.

A few key properties of Real Arithmetic:
• Commutative over addition and multiplication: (a+b) = (b+a) a*b = b*a
• Associative: (a+b)+c = a+(b+c) (a*b)*c = a*(b*c)
• Multiplication distributes over addition: c * (a+b) = c*a + c*b

Arithmetic over Real Numbers

Numbers for Humans

6

These different kinds of numbers are contained within
the set of real numbers

• Integers: equally spaced numbers without a
fractional part

• Rational numbers: Ratios of integers
• Whole numbers: Positive integers and zero
• Natural numbers: Positive integers and not zero
• Irrational numbers: numbers that cannot be

represented as a ratio of integers

Based on slides from Ianna Osborne, CoDaS-HEP, July 19, 2023

People use many different kinds of numbers

Numbers for Humans

7

: Example

𝐺 ≈ 0.00000000006674
𝑚!

𝑘𝑔 ∗ 	𝑠"

0.00000000006674

Scientific Notation

Based on slides from Ianna Osborne, CoDaS-HEP, July 19, 2023

The exponent tells us how far
to “float” the decimal point.

G ≈ 6.674 × 10-11 m3⋅kg-1⋅s-2
significand

radix

exponent

Numbers for Humans

8

How do we represent Real Numbers?

𝐺 ≈ 6 . 10# + 6 . 10$% + 7 . 10$" + 4 . 10$! .	10$%%

𝑥 = (−1)&'()6
'*#

+

𝑑'𝒃$'𝒃,-.

𝑠𝑖𝑔𝑛 ∈ 0,1 , 𝑏 ≥ 2,	 𝑑!∈ 0,… , 𝑏 − 1 , 	 𝑑"> 0	𝑤ℎ𝑒𝑛	𝑥 ≠ 0, 	b, 𝑖, exp ∈ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

We can generalize the above to any real number as …

Based on slides from Ianna Osborne, CoDaS-HEP, July 19, 2023

G ≈ 6.674 × 10-11 m3⋅kg-1⋅s-2
significand

radix

exponent

… where 𝒃 is the radix

Numbers for Humans

9

How do we represent Real Numbers?

𝐺 ≈ (6 . 10# + 6 . 10$% + 7 . 10$" + 4 . 10$!) . 10$%%

𝑥 = (−1)&'()6
'*#

+

𝑑'𝑏$'𝑏,-.

𝑠𝑖𝑔𝑛 ∈ 0,1 , 𝑏 ≥ 2,	 𝑑!∈ 0,… , 𝑏 − 1 , 	 𝑑"> 0	𝑤ℎ𝑒𝑛	𝑥 ≠ 0, 	b, 𝑖, exp ∈ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

We can generalize the above to any real number as …

What about numbers
for computers?

Based on slides from Ianna Osborne, CoDaS-HEP, July 19, 2023

Human’s deal nicely with∞.
Computers do not.

Human’s like a radix = 10.
Which b is best for a computer?

G ≈ 6.674 × 10-11 m3⋅kg-1⋅s-2
significand

radix

exponent

Numbers for Computers

10

𝑥 = (−1)&'()6
'*#

0

𝑑'𝑏$'𝑏,-.

𝑠𝑖𝑔𝑛 ∈ 0,1 , 𝑏 ≥ 2,	 𝑑!∈ 0,… , 𝑏 − 1 , 	 𝑑"> 0	𝑤ℎ𝑒𝑛	𝑥 ≠ 0, 	b, 𝑖, exp ∈ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

Computers work with a restricted subset of real numbers…
Finite precision … restricted to N

digits.

N is tied to the length of a “word” in a
computer’s architecture. This is

typically the width of the registers in a
microprocessor’s register file.

Which radix (b) is best for a computer?

Binary has di ∈ {0,1}. Naturally maps onto representation as transistors used to implement computer logic.

Decimal has di ∈ {0, …, 9}. Requires four bits per digit … which wastes space (since four bits can encode {0,…,15}).

Exercise: Playing with “numbers for computers”

• You are a software engineer working on a device that tracks objects in time and space.

• The device increments time in “clock ticks” of 0.01 seconds.

• Write a program that inputs an integer for a maximum number of clock ticks. The program tracks
time by accumulating clock-ticks. N is typically large … around 100 thousand. Output from the
function is elapsed seconds expressed as a float.
– Assume you are working with an embedded processor that does not support the type double.
– This is part of an interrupt driven, real time system, hence track “time” not “number of ticks” since this time may be

needed at any moment.

• What does your program generate for large N?

11

Accumulating clock ticks (0.01): Solution
#include <stdio.h>
#define time_step 0.01f

float CountTime(int Count)
{
 float sum = 0.0f;

 for (int i=0; i<Count;i++)
 sum += time_step;

 return sum;
}
int main()
{
 int Count = 500000;
 float time_val;

 time_val = CountTime(Count);
 printf(" sum = %f or %f\n",time_val,time_step*Count);
} 12

% gcc -O0 hundreth.c
% ./a.out
sum = 4982.411132. or 5000.000000

%

Converting a decimal number (0.01) to fixed point binary

13

1
2

1
4

1
8

1
16

1
32

1
64

1
128

1
254

1
512

1
1024

1
2048

1
2𝑁

1
4096

1
8196

1
16384

1
32768

1
65536

1
131072

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17N

• Continuing to 32 bits we get 0.00000010100011110101110000101000… but it’s still not done.

• The denominator of the number 1/100 includes a relative prime (5) to the radix of binary numbers (2).
Hence, there is no way to exactly represent 1/100 in binary!

0.01!" ≈ 0.0000001#

0.01!" ≈ 0.000000101#

0.01!" ≈ 0.0000001010001#

The fraction !
#!

 nearest but less than or equal to !
!""

 is !
!#$

 (N=7)

The remainder !
!""

− !
!#$

= %
&#""

≈ !
'(%

. 	The	fraction !
#!

 nearest but

less than or equal to this remainder is !
(!#

 (N=9)

The remainder %
&#""

− !
(!#

= &
!#$""

≈ !
'#))

. 	The	fraction !
#!

 nearest

but less than or equal to this remainder is !
$!*)

 (N=13)

0.01 is equal to !
!""

.

Real numbers on a computer are represented as finite precision numbers

• Conclusion: Many decimal numbers do not have an exact representation as binary numbers.
– You can have computations where the answer does NOT have an exact binary representation … in other words,

fixed precision arithmetic is NOT a closed set.

float c, b = 1000.2f;
c = b - 1000.0;
printf (" %f”, c);

Output: 0.200012

• The best we can hope for is that the computer does the computation “exactly” then rounds to the
nearest binary number.

When these finite precision numbers have decimal points and
exponents, we call them floating point numbers.

Real numbers on a computer are represented as finite precision numbers

• Conclusion: Many decimal numbers do not have an exact representation as binary numbers.
– You can have computations where the answer does NOT have an exact binary representation … in other words,

fixed precision arithmetic is NOT a closed set.

float c, b = 1000.2f;
c = b - 1000.0;
printf (" %f”, c);

Output: 0.200012

• The best we can hope for is that the computer does the computation “exactly” then rounds to the
nearest binary number.

When these finite precision numbers have decimal points and
exponents, we call them floating point numbers.

Who cares?
Does this really matter?

Patriot Missile system
Patriot missile incident (2/25/91) . Failed to stop a scud missile from hitting a barracks,

killing 28 Americans.

See http://www.fas.org/spp/starwars/gao/im92026.htm

Patriot missile system: how it works

17

Missile

Search Action: entire
beam processed to get
position and velocity

Verification: range
around trajectory
defines a ”range gate”

Tracking
Only objects in the “range gate”
are tracked … to make sure
other flying objects are not
accidentally targeted.

Range gate area

Incoming object detected as an enemy missile due to properties of the trajectory. Velocity and position from Radar fixes trajectory

24 bit clock counter defines time. Range calculations defined by real arithmetic, so convert to floating point numbers.

Patriot Radar
System

Patriot missile system: Disaster Strikes

18

Incoming object detected as an enemy missile due to properties of the trajectory. Velocity and position from Radar fixes trajectory

Accumulating clock-ticks (int) by the float representation of 0.01 led to an error of 0.3433 seconds after 100 hours of operation
which, when you are trying to hit a missile moving at Mach 5, corresponds to an error of 687 meters

Missile

Search Action: entire
beam processed to get
position and velocity

Verification: range
around trajectory
defines a ”range gate”

Tracking
Only objects in the “range gate”
are tracked … to make sure
other flying objects are not
accidentally targeted.

Erroneous Range
gate location

Patriot Radar
System

Missile outside range gate

Exercise: Playing with “numbers for computers”

• You are a software engineer working on a device that tracks objects in time and space.

• The device increments time in “clock ticks” of 0.01 seconds. Propose (and test) a value for the
clock tick that makes the program work.

• Write a program that inputs an integer for a maximum number of clock ticks. The program tracks
time by accumulating clock-ticks. N is typically large … around 100 thousand. Output from the
function is elapsed seconds expressed as a float.
– Assume you are working with an embedded processor that does not support the type double.
– This is part of an interrupt driven, real time system, hence track “time” not “number of ticks” since this time may be

needed at any moment.

• What does your program generate for large N?

19

Exercise: Playing with “numbers for computers”

• You are a software engineer working on a device that tracks objects in time and space.

• The device increments time in “clock ticks” of 0.01 seconds. Propose (and test) a value for the
clock tick that makes the program work.

• Write a program that inputs an integer for a maximum number of clock ticks. The program tracks
time by accumulating clock-ticks. N is typically large … around 100 thousand. Output from the
function is elapsed seconds expressed as a float.
– Assume you are working with an embedded processor that does not support the type double.
– This is part of an interrupt driven, real time system, hence track “time” not “number of ticks” since this time may be

needed at any moment.

• What does your program generate for large N?

20

> ./a.out
dt = 0.0078125000000000000. // dt=1.0/128.0 … one over a power of two
sum = 39062.5000000000000000000, dt*Count=39062.5000000000000000000

Floating Point Numbers are not Real: Lessons Learned

21

Real Numbers Floating Point numbers

Any number can be represented … real numbers are
a closed set

Not all numbers can be represented … operations
can produce numbers that cannot be represented …
that is, floating point numbers are NOT a closed set

Outline
• Numbers for humans. Numbers for computers
• Finite precision, floating point numbers
– General case
– IEEE 754 floating point standard

• Working with IEEE 754 floating point arithmetic
– Addition
– Subtraction
– Rounding

• Wrap-up/Conclusion
• Additional Content
– Numerical Analysis
– Changing numbers of bits
– Compiler options
– A Few Exercises
– Exercises
– Solutions

22

Source: Ianna Osborne, CoDaS-HEP, July 19, 2023

Source: Ianna Osborne, CoDaS-HEP, July 19, 2023

The
concept of

floating
point

numbers is
very old

(1750 BC)

The era of floating
point chaos … no

standards

IEEE-754
floating point is
born … thanks
to a team led

by William
Kahan

Intel produces
the first chip to
support IEEE-
754 in 1980
(the 8087

coprocessor)

IEEE-754
floating point
continues to

evolve … next
version

expected in
2029

Summarizing the key points …

First CPU with
an integrated
IEEE-754 unit

Floating Point Number systems

25

𝑥 = (−1)&'()6
'*#

.

𝑑'𝑏$'𝑏, = ±𝑑#.𝑑%…𝑑.$%×𝑏,

Computers work with finite precision, floating point numbers …

𝑏 ≥ 2

𝑝 ≥ 1

𝑒𝑚𝑎𝑥

𝑒𝑚𝑖𝑛

The radix … usually 2 or 10 (but occasionally 8 or 16)

The precision … the number of digits in the significand

The largest exponent

The smallest exponent (generally 1 – emax)

These four numbers define a unique set of floating point numbers … written as F(b, p, emax, emin)

𝑠𝑖𝑔𝑛 ∈ 0,1
𝑑! ∈ 0,… , 𝑏 − 1

𝑒#!$ ≤ 𝑒 ≤ 𝑒#%&

Floating Point Number systems: Normalized numbers

26

𝑥 = (−1)&'()6
'*#

.

𝑑'𝑏$'𝑏, = ±𝑑#1.𝑑%…𝑑.$%×𝑏,

Consider representations of the decimal number 0.1

F*(b, p, emax, emin)

𝑠𝑖𝑔𝑛 ∈ 0,1
𝑑! ∈ 0,… , 𝑏 − 1

𝑒#!$ ≤ 𝑒 ≤ 𝑒#%&

1.0×10'(, 	 0.1×10", 	 0.01×10(

• These are all the same number, just represented differently depending on the choice of exponent.
• That ambiguity is confusing, so we require that d0 ≠ 0 so numbers between bmin and bmax have a single

unique representation.
• We call these normalized floating point numbers

𝑑" ≠ 0

• do not have normalized representations. 𝑥 = 0	 𝑎𝑛𝑑	𝑥 < 𝑏0!"#

Source: Ianna Osborne, CoDaS-HEP, July 19, 2023 27F*(Radix, Precision, emin, emax)

Equivalent
decimal values
for all patterns

of normal
binary digits

and exponents

Outline
• Numbers for humans. Numbers for computers
• Finite precision, floating point numbers
– General case
– IEEE 754 floating point standard

• Working with IEEE 754 floating point arithmetic
– Addition
– Subtraction
– Rounding

• Wrap-up/Conclusion
• Additional Content
– Numerical Analysis
– Changing numbers of bits
– Compiler options
– A Few Exercises
– Exercises
– Solutions

28

Source: Wahid Redjeb, ESC’22 29

IEEE 754 Floating Point Numbers

Source: Wahid Redjeb, ESC’22 30

IEEE 754 Floating Point Numbers

For normalized, binary floating
point numbers, the lead bit is

“always” one so there is no reason
to store it. The bit is “hidden”

Exceptions and associated special values
• Certain situations outside “normal” behavior are defined as Exceptions. Two cases:

1. An exception occurs, a result is returned and the computation proceeds. This is the typical case.
2. The exception is signaled. An optional trap function may be invoked. Trapping can be set through compiler switches but can

seriously slow down code. Thbis very rarely done … except by professionals writing low-level math libraries.
• Associated with the exceptions, are a number of “special values”:

31

• The Exceptions defined by IEEE 754 include the following
– Underflow: The result is too small to be represented as a normalized float. Produces a signed zero or a denormalized float.
– Overflow: The result is too large to be represented by a normalized float. Produces a signed infinity.
– Divide-by-zero: A float is divided by zero. The appropriate infinity is returned.
– Invalid: The operation or its result is ill-defined (such as 0.0/0.0). A NaN is returned.
– Inexact: The result of the floating point operation is not exact and must be rounded. The rounded result is returned

The special value exponent fraction
1. 𝑓×2+ 𝑒,-. ≤ 𝑒 ≤ 𝑒,/0 Any pattern of 1’s and 0’s
0. 𝑓×2+!"# All 0’s (𝑒,-. − 1) 𝑓 ≠ 0

±0 All 0’s (𝑒,-. − 1) 𝑓 = 0

±∞ All 1’s (𝑒,/0 + 1) 𝑓 = 0
NaN All 1’s (𝑒,/0 + 1) 𝑓 ≠ 0

Regular normalized floating point numbers.

Numbers too small to normalize.

0’s and ∞‘s have signs, to work with limits in math.

Not a Number (undefined math such as 0/0).

More about NaNs

32

• Here are the cases where a NaN can be produced.

• There are actually two kinds of NaNs:
– A quiet NaN … A NaN condition is identified but no further information is provided. The fraction bits are all zero other

than the first one.
– A signaling NaN … Additional implementation dependent information is encoded into the fraction bits.

Operation NaN produced by …
+ ∞+ (−∞)
× 0×∞
/ 0/0, 	∞/∞

𝑅𝐸𝑀 𝑥	𝑅𝐸𝑀	0, 	∞𝑅𝐸𝑀	𝑦
	 𝑥	 𝑤ℎ𝑒𝑛	 𝑥 < 0

Source: What every computer computer scientist should know about floating point arithmetic, David Goldberg, Computing Surveys, 1991 https://dl.acm.org/doi/pdf/10.1145/103162.103163

33

Writing IEEE 754 numbers in binary

IEEE name Precision N bits Exponent w Fraction p emin emax
Binary 64 double 64 11 53 -1022 1023

1 00101000100000000

sign fraction, p-1, 23 bitsexponent, w, 11 bits

• The number 42.0 written in binary

Keeping track of all 64 locations and
writing all those zeros is painful

34

Writing IEEE 754 numbers in binary/hexadecimal

IEEE name Precision N bits Exponent w Fraction p emin emax
Binary 64 double 64 11 53 -1022 1023

1 00101000100000000

sign fraction, p-1, 23 bitsexponent, w, 11 bits

0x 0000000000005404

• The number 42.0 written in binary with the equivalent hexadecimal (base 16) form beneath.

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

10 A 1010

11 B 1011

12 C 1100

13 D 1101

14 E 1110

15 F 1111

Decimal,
hexadecimal, and

binary

• It is dramatically easier to write things down in hexadecimal than binary.

• The following are notable examples of key “numbers” in hexadecimal.

-42 0xC045000000000000

Largest normal 0x7FEFFFFFFFFFFFF

Smallest normal 0x0010000000000000

Largest subnormal 0x000FFFFFFFFFFFF

Smallest subnormal 0X0000000000000001

+ zero 0x0000000000000000

-zero 0x8000000000000000

+infinity 0x7FF0000000000000

-infinity 0x8FF0000000000000

NaN 0X7FF-anything but all-zero

NaN: not a number A normal is a number that can be written in a normalized floating point format A subnormal is too small to be written as a normalized number
… the exponent would need to be less than emin.

Outline
• Numbers for humans. Numbers for computers
• Finite precision, floating point numbers
– General case
– IEEE 754 floating point standard

• Working with IEEE 754 floating point arithmetic
– Addition
– Subtraction
– Rounding

• Wrap-up/Conclusion
• Additional Content
– Numerical Analysis
– Changing numbers of bits
– Compiler options
– A Few Exercises
– Exercises
– Solutions

35

Addition with floating point numbers
• Lets keep things simple and work with F*(10, 3, -2, 2)

• Find the sum … 1.23 x 101 + 3.11 x 10-1
– Align smaller number to the exponent of the larger number

0.0311 x 101
– Add the two aligned numbers …..

36F*(Radix, Precision, emin, emax)

1 . 2 3
0 . 0 3 1 1
1 . 2 6 1 1

– Round to nearest (the default rounding in IEEE 754).

1 . 2 6

• Adding numbers with greatly different magnitudes causes loss of precision
(you lose the low order bits from the exact result).

x 101

x 101

x 101

x 101

Floating point arithmetic is not associative
• IEEE 754 guarantees that a single arithmetic operation produces a correctly rounded exact result … but that

guarantee does not apply to multiple operations in sequence.

• Floating point numbers are:
– Commutative: A * B = B * A
– NOT Associative: A * (C * B) ≠ (A * C) * B
– NOT Distributive: A*(B+C) ≠ A*B + A*C

• And non-associativity can be inconsistent.
(0.7+0.1) + 0.3 = 1.0999999999999
0.7 + (0.1+0.3) = 1.1

– A more difficult case of non-associativity
a = 1.e20; b= -1.e20; c=1.0
(a+b) + c = 1.0
a+(b+c) = 0.0

37

These results
were generated

by python

In C (with –O0,
gcc ver. 13.1),
associativity

held.

(0.7+0.1) + 0.3 = 1.1
0.7 + (0.1+0.3) = 1.1

a = 1.e20; b= -1.e20; c=1.0
(a+b) + c = 1.0
a+(b+c) = 1.0

Exercise: summing numbers

• Compute the finite sum:

38

𝑠𝑢𝑚 = 	C
!)(

*
1.0
𝑖

• This is a simple loop. Run it forward (i=1,N) and
backwards (i=N,1) for large N (10000000). Try both
double and float

• Are the results different? Why?

Exercise: summing numbers

• Compute the finite sum:

39

𝑠𝑢𝑚 = 	C
!)(

*
1.0
𝑖

• This is a simple loop. Run it forward (i=1,N) and
backwards (i=N,1) for large N (10000000). Try both
double and float

• Are the results different? Why?

– In the forward direction, the terms in the sum get smaller as you
progress. This leads to loss of precision as the smaller terms lates in
the summation are added to the much larger accumulated partials sum.

– In the backwards direction, the terms in the sum start small and grow …
so reduced loss of precision adding small numbers to much larger
numbers.

– Using double precision eliminated this problem.

#include<stdio.h>
int main(){

 float sum=0.0;
 long N = 10000000;

 for(int i= 1;i<N;i++){
 sum += 1.0/(float)i;
 }
 printf(" sum forward = %14.8f\n",sum);

 sum = 0.0;
 for(int i= N-1;i>=1;i--){
 sum += 1.0/(float)i;
 }
 printf(" sum backward = %14.8f\n",sum);
}

double float
forward 16.69531127 15.40368271
backward 16.69531127 16.68603134

float or double

Floating Point Numbers are not Real: Lessons Learned

40

Real Numbers Floating Point numbers

Any number can be represented … real numbers are
a closed set

Not all numbers can be represented … operations
can produce numbers that cannot be represented …
that is, floating point numbers are NOT a closed set

Basic arithmetic operations over Real numbers are
commutative, distributive and associative.

Basic operations over floating point numbers are
commutative, but NOT associative or distributive.

With arbitrary precision, there is no loss of accuracy
when adding real numbers

Adding numbers of different sizes can cause loss of
low order bits.

Outline
• Numbers for humans. Numbers for computers
• Finite precision, floating point numbers
– General case
– IEEE 754 floating point standard

• Working with IEEE 754 floating point arithmetic
– Addition
– Subtraction
– Rounding

• Wrap-up/Conclusion
• Additional Content
– Numerical Analysis
– Changing numbers of bits
– Compiler options
– A Few Exercises
– Exercises
– Solutions

41

Source: Ianna Osborne, CoDaS-HEP, July 19, 2023

Exercise: Implement a Series summation to find ex

• A Taylor/Maclaurin series expansion for ex

43

𝑒1 = 1 + 𝑥 +
𝑥#

2! +
𝑥&

3! +	… = V
23"

4
𝑥2

𝑛!

1. Compare to the exp(x) function in math.h for a range of x values greater than zero.
– How do your results compare to the exp(x) library function?

2. Compute ex for x<0. Consider small negative to large negative values.
– Do you continue to match the exp(x) library function?

Exercise: Implement a Series summation to find ex

• A Taylor/Maclaurin series expansion for ex

44

𝑒1 = 1 + 𝑥 +
𝑥#

2! +
𝑥&

3! +	… = V
23"

4
𝑥2

𝑛!

• The computation of xn and n! are expensive
but worse … they lead to large numbers
that could overflow the storage format.

• A better approach is to use the relation:

𝑥2

𝑛!
=
𝑥
𝑛
•

𝑥25!

𝑛 − 1 !

• Terminating the sum … obviously
you don’t want to go to infinity.
How do you terminate the sum?
A good approach is to end the
sum when new terms do not
significantly change the sum.

• For x< 0, compare computation
of ex directly and as ex = 1/ ex.

#define TYPE float
TYPE MyExp (TYPE x) {
 long counter = 0;
 TYPE delta = (TYPE)1.0;
 TYPE e_tothe_x = (TYPE)1.0;
 while((1.0 + delta) != 1.0) {
 counter++;
 delta *= x/counter;
 e_tothe_x +=delta;
 }
 return e_tothe_x;
}

x exp(x) math.h MyExp(x)

5 148.413 148.413

10 22026.5 22026.5

15 3.26902e+06 3.26902e+06

20 4.85165e+08 4.85165e+08

x exp(x) math.h MyExp(x) 1/MyExp(|x|)

-5 6.73795e-03 6.73714e-03 6.73795e-03

-10 4.53999e-05 -5.23423e-05 4.53999e-05

-15 3.05902e-07 -2.23869e-02 3.05902e-07

-20 2.06115e-09 -1.79703 2.06115e-09

When x>0 in series, no cancelation and MyExp matches exp from the standard
math library (math.h)

When x<0 in series, MyExp does not match exp from math.h due to cancelation.
Results become nonsensical for x= -10 and beyond.

Solution: Numerical Analysis
Refactoring functions to improve floating point behavior

• Evaluate the following function for large x
(x = 10k for k = 5,6,7,8 …)

45

𝑓 𝑥 =
1

𝑥# + 1 − 𝑥

• Can you refactor the function to make it numerically more stable?

Solution: Numerical Analysis
Refactoring functions to improve floating point behavior

46

• Evaluate the following function for large x
(x = 10k for k = 5,6,7,8 …)

𝑓 𝑥 =
1

𝑥# + 1 − 𝑥

• For large x, 𝑥+ + 1 ≈ 𝑥 so we expect problems with cancelation in the denominator.
• We can refactor the expression to remove the cancelation.

𝑓 𝑥 =
1

𝑥# + 1 − 𝑥
=

𝑥# + 1 + 𝑥
(𝑥# + 1 − 𝑥)(𝑥1 + 1 + 𝑥)

=
𝑥# + 𝑥

𝑥# + 1 − 𝑥# = 𝑥# + 1 + 𝑥

x 1
𝑥# + 1 − 𝑥

𝑥# + 1 + 𝑥

105 200000.223331 200000.000005
106 1999984.771129 2000000.000001
107 19884107.851852 20000000.000000
108 inf 200000000.000000

Solutions degrades
until divide by zero

Solution: Numerical Analysis
Refactoring functions to improve floating point behavior

47

• Evaluate the following function for large x
(x = 10k for k = 5,6,7,8 …)

𝑓 𝑥 =
1

𝑥# + 1 − 𝑥

• For large x, 𝑥+ + 1 ≈ 𝑥 so we expect problems with cancelation in the denominator.
• We can refactor the expression to remove the cancelation.

𝑓 𝑥 =
1

𝑥# + 1 − 𝑥
=

𝑥# + 1 + 𝑥
(𝑥# + 1 − 𝑥)(𝑥1 + 1 + 𝑥)

=
𝑥# + 𝑥

𝑥# + 1 − 𝑥# = 𝑥# + 1 + 𝑥

x 1
𝑥# + 1 − 𝑥

𝑥# + 1 + 𝑥

105 200000.223331 200000.000005
106 1999984.771129 2000000.000001
107 19884107.851852 20000000.000000
108 inf 200000000.000000

Solutions degrades
until divide by zero

This sort of mathematical refactoring to produce numerically stable algorithms
is prohibitively difficult to apply to “real” problems. Very few people have

formal training in numerical analysis.

Computer Science has changed over my lifetime.
Numerical Analysis seems to have turned into a
sliver under the fingernails of computer scientists

Prof. W. Kahan, Desperately needed Remedies … Oct. 14, 2011

Floating Point Numbers are not Real: Lessons Learned

48

Real Numbers Floating Point numbers

Any number can be represented … real numbers are
a closed set

Not all numbers can be represented … operations
can produce numbers that cannot be represented …
that is, floating point numbers are NOT a closed set

Basic arithmetic operations over Real numbers are
commutative, distributive and associative.

Basic operations over floating point numbers are
commutative, but NOT associative or distributive.

With arbitrary precision, there is no loss of accuracy
when adding real numbers

Adding numbers of different sizes can cause loss of
low order bits.

With arbitrary precision, there is no loss of accuracy
when subtracting real numbers

Subtracting two numbers of similar size cancels
higher order bits

Outline
• Numbers for humans. Numbers for computers
• Finite precision, floating point numbers
– General case
– IEEE 754 floating point standard

• Working with IEEE 754 floating point arithmetic
– Addition
– Subtraction
– Rounding

• Wrap-up/Conclusion
• Additional Content
– Numerical Analysis
– Changing numbers of bits
– Compiler options
– A Few Exercises
– Exercises
– Solutions

49

IEEE 754 arithmetic and rounding
• The IEEE 754 standard requires that the result of basic arithmetic ops (+, -, *, /, FMA) be equal to the result from

“infinitely precise arithmetic” rounded to the storage format (e.g., float or double).

• Consider the following problem … subtract two IEEE 754 32 bit numbers (F*(2,24,127,-126)):

50FMA: Fused Multiple Add … d = a*b+c Content based on slides from Ianna Osborne, CoDaS-HEP, July 19, 2023

• We normalize them to the same exponent and carry out the operation exactly

1.00000000000000000000000 2

0.11111111111111111111111101111111111111111111110 2

(1.00000000000000000000001)2

0.00000000000000000000000010000000000000000000001 2

Y 2"
Y 25#(

1.00000000000000000000000	 2 Y 2"

Y 2"

-

-

Y 2"

• Then normalize the result

=

1.1111111111111111111111101111111111111111111111 2 Y 25!

• Then round to nearest to fit into the destination format

1.11111111111111111111111 2 Y 25!

F*(Radix, Precision, emin, emax)

IEEE 754 arithmetic and rounding
• The IEEE 754 standard requires that the result of basic arithmetic ops (+, -, *, /, FMA) be equal to the result from

“infinitely precise arithmetic” rounded to the storage format (e.g., float or double).

• Consider the following problem … subtract two IEEE 754 32 bit numbers (F*(2,24,127,-126)):

51

• We normalize them to the same exponent and carry out the operation exactly

1.00000000000000000000000 2

0.11111111111111111111111101111111111111111111110 2

(1.00000000000000000000001)2

0.00000000000000000000000010000000000000000000001 2

Y 2"
Y 25#(

1.00000000000000000000000	 2 Y 2"

Y 2"

-

-

Y 2"

• Then normalize the result

=

1.1111111111111111111111101111111111111111111111 2 Y 25!

• Then round to nearest to fit into the destination format

1.11111111111111111111111 2 Y 25!

The exact result
doubled the

number of bits in
the fraction. Do

we really need all
those bits?

FMA: Fused Multiple Add … d = a*b+c Content based on slides from Ianna Osborne, CoDaS-HEP, July 19, 2023F*(Radix, Precision, emin, emax)

IEEE 754 arithmetic and rounding

• Turns out you only need three extra bits … the Guard bit, the Rounding bit, and the Sticky Bit (GRS)

52

0.11111111111111111111111101 2

0.00000000000000000000000011 2

1.00000000000000000000000000 2 Y 2"
Y 2"-

Y 2"

Next 2 bits in the answer:
the guard and rounding bits

The Sticky bit: the logical or of all the other bits
(i.e., if any bit is “1” then the sticky bit is “1”

1.1111111111111111111111101 2 Y 25!
1.11111111111111111111111 2 Y 25!

Normalize
Round to nearest

• The Guard, Rounding, and Sticky bits are sufficient to support all the IEEE 754 rounding modes to yield the
same result you’d get from an exact computation followed by rounding into the target format.

• Exactly rounded results are required for the basic arithmetic operations (including FMA) but also square root,
remainder, and conversion between Integer and Floating point numbers … but not for conversion between
decimal and binary floating point.

FMA: Fused Multiple Add … d = a*b+c Content based on slides from Ianna Osborne, CoDaS-HEP, July 19, 2023F*(Radix, Precision, emin, emax)

IEEE 754 Rounding Modes

53Source: Numerical behavior of NVIDIA tensor cores, M. Fasi, N. J. Higham, M. Mikaitis, and S. Pransesh, PeerJ Comp. Sci. 7:e330, Feb 10, 2021, DOI: 10.7717/peerj-cs.330/fig-1

Consider a real number x that falls between its two nearest floating point numbers (x1 and x2). At the midpoint between x1
and x2 is the real number xm. We have four cases to consider when thinking about rounding.

https://doi.org/10.7717/peerj-cs.330/fig-1

IEEE 754 Rounding Modes

54Source: Numerical behavior of NVIDIA tensor cores, M. Fasi, N. J. Higham, M. Mikaitis, and S. Pransesh, PeerJ Comp. Sci. 7:e330, Feb 10, 2021, DOI: 10.7717/peerj-cs.330/fig-1

RN: Round to Nearest. RD: Round Downward RZ: Round towards zero RU: Round upward

Consider a real number x that falls between its two nearest floating point numbers (x1 and x2). At the midpoint between x1
and x2 is the real number xm. The horizontal dotted line shows the floating point numbers selected for the different rounding
modes (RN, RD, RZ, RU) for position of x vs xm and which side of zero x is on.

https://doi.org/10.7717/peerj-cs.330/fig-1

You must be careful how you manage rounding…
Vancouver stock exchange index undervalued by 50%

(Nov. 25, 1983)

See http://ta.twi.tudelft.nl/usersvuik/wi211/disasters.html

Index managed on an IBM/370. 3000 trades a day and for each trade, the
index was truncated to the machine’s REAL*4 format, loosing 0.5 ULP per
transaction. After 22 months, the index had lost half its value.

Third party names are the property of their owners

Relative errors and ULPs
• Rounding error is inherent in floating-point computations

• How do we measure this error?
– Consider a radix 10 floating-point format (decimal) numbers with three digits.
– If the result of a floating-point computation is 3.12 × 10-2, and the answer when computed to infinite precision is

.0314, it is clear that this is in error by 2 units in the last place or 2 ulp.
– if the real number .0314159 is represented as 3.14 × 10-2, then it is in error by .159 units in the last place.
– We define “unit in the last place” by the initialism, “ulp”

– Continuing with radix 10 numbers with three digits …
– If the result using real arithmetic is 3.14159 and is approximated with floating point as 3.14, we define the relative

error as the difference between the real and the floating point results divided by the real result:

56

• When a result from an operation is carried out to produce the correct result (as determined by real
arithmetic) and rounded to the nearest floating point number, the error can be no larger than 0.5
ulp

&.!'!(*5&.!'
&.!'!(*

 = 0.0005

Working with IEEE 754 rounding modes

#include <fenv.h>
 //#pragma STDC FENV_ACCESS ON

 // store the original rounding mode
 const int originalRounding = fegetround();

 // establish the desired rounding mode
 fesetround(FE_TOWARDZERO);

 // do whatever you need to do ...
 // ... and restore the original mode afterwards
 fesetround(originalRounding);

57

#include <cfenv>
 // #pragma STDC FENV_ACCESS ON

 // store the original rounding mode
 const int originalRounding = std::fegetround();

 // establish the desired rounding mode
 std::fesetround(FE_TOWARDZERO);

 // do whatever you need to do ...
 // ... and restore the original mode afterwards
 std::fesetround(originalRounding);

C C++

The 4 rounding modes in IEEE 754

Default
rounding
mode

Two versions of round to nearest…
• Nearest, on a tie, round to even
• Nearest, on a tie, away from zero

Three directed roundings

Clang and GCC compilers
to not recognize the STDC
pragma (even though they
are technically required to).

Fortunately, rounding
mode control seems to
work without it.

If not, try the compiler flag
–frounding-math

Exercise: IEEE 754 rounding modes

#include <fenv.h>
 //#pragma STDC FENV_ACCESS ON

 // store the original rounding mode
 const int originalRounding = fegetround();

 // establish the desired rounding mode
 fesetround(FE_TOWARDZERO);

 // do whatever you need to do ...
 // ... and restore the original mode afterwards
 fesetround(originalRounding);

58

#include <cfenv>
 // #pragma STDC FENV_ACCESS ON

 // store the original rounding mode
 const int originalRounding = std::fegetround();

 // establish the desired rounding mode
 std::fesetround(FE_TOWARDZERO);

 // do whatever you need to do ...
 // ... and restore the original mode afterwards
 std::fesetround(originalRounding);

C C++

The 4 rounding modes in IEEE 754

Clang and GCC compilers
to not recognize the STDC
pragma (even though they
are technically required to).

Fortunately, rounding
mode control seems to
work without it.

If not, try the compiler flag
–frounding-math

• Explore how different rounding modes change the answers of
programs you have on your system.

• What does it tell you if answers change as rounding modes change?

Outline
• Numbers for humans. Numbers for computers
• Finite precision, floating point numbers
– General case
– IEEE 754 floating point standard

• Working with IEEE 754 floating point arithmetic
– Addition
– Subtraction
– Rounding

• Wrap-up/Conclusion
• Additional Content
– Numerical Analysis
– Changing numbers of bits
– Compiler options
– A Few Exercises
– Exercises
– Solutions

59

Should we trust computer arithmetic?
Sleipner Oil Rig Collapse (8/23/91). Loss: $700 million.

See http://www.ima.umn.edu/~arnold/disasters/sleipner.html

Linear elastic model using NASTRAN underestimated shear
stresses by 47% resulted in concrete walls that were too thin.

$1.6 Billion in
2024 dollars

NASTRAN is the world’s
most widely used finite

element code … in heavy
use since 1968

We can’t trust FLOPS … let’s give up and return to slide rules

61
(an elegant weapon for a more civilized age)

Public Domain, https://commons.wikimedia.org/w/index.php?curid=17480483

Image source: Presbrey advertising agency for International Business Machines, 1951

https://commons.wikimedia.org/w/index.php?curid=17480483

Sleipner Oil Rig Collapse: The slide-rule wins!!!

62

Conclusion
• Floating point arithmetic usually works and you can “almost always” be comfortable using it.

• Floating point arithmetic is mathematically rigorous. You can prove theorems and develop rigorous
error bounds. This is the field of numerical analysis.

• Unfortunately, almost nobody learns numerical analysis these days.

• As scientists using computers in your research, maintain a healthy skepticism of your results …
don’t be shy about testing the fidelity of your computations*.
1. Repeat the computation with arithmetic of increasing precision, increasing it until a desired number of

digits in the results agree.
2. Repeat the computation in arithmetic of the same precision but rounded differently, say Down then Up and

perhaps Towards Zero, then compare results (this wont work with libraries that require a particular
rounding mode).

3. Repeat computation a few times in arithmetic of the same precision but with slightly different input data,
and see how widely results vary.

63*Source: W. Kahan: How futile are mindless Assessments of Roundoff in floating-point computation?

References

• What every computer computer scientist should know about floating point
arithmetic, David Goldberg, Computing Surveys, 1991.

– https://dl.acm.org/doi/pdf/10.1145/103162.103163

• W. Kahan: How futile are mindless Assessments of Roundoff in floating-point
computation?
– https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf

• History of IEEE-754: an interview with William Kahan
– https://people.eecs.berkeley.edu/~wkahan/ieee754status/754story.html

64

https://people.eecs.berkeley.edu/~wkahan/ieee754status/754story.html

Additional content
• Numerical Analysis
• Changing numbers of bits
• Compiler options
• A Few Exercises
– Exercises
– Solutions

65

Numerical Analysis
• The details of how we do arithmetic on computers and the branch of mathematics that studies the

consequences of computer arithmetic (numerical analysis) is fundamentally boring.
– Even professionals who work on computer arithmetic (other than W. Kahan*) admit (maybe only in private) that it’s boring.

• It’s fine to take floating point arithmetic for granted … until something breaks.

• The scary part of this … is that you don’t know something is wrong with your program until disaster
strikes!!!!

66*Professor William Kahan of UC Berkeley is the father of modern floating point arithmetic (IEEE-754)

Computer Science has changed over my lifetime. Numerical Analysis seems
to have turned into a sliver under the fingernails of computer scientists

Prof. W. Kahan, Desperately needed Remedies … Oct. 14, 2011

You don’t need to be paranoid, but be skeptical of ANYTHING you compute on a comptuer.

Error Analysis: error in input à error in output
• View a program as taking input, x, and evaluating a function, f(x), to compute output, y. The

numerical analyst is interested in the following evaluation:

67

𝑓 𝑥 + ∆𝑥 = 𝑦 + ∆𝑦

• Note: ∆x includes all sources of error including roundoff errors, loss of precision, cancelation or
even errors in collected data.

• Numerical analysts summarize the stability of a problem in terms of a ratio … the ratio of the error
in the generated result to the error in the input. This is normalized to the range of values in y and
x leading to what is called the condition number, C:

𝐶 =
∆"
"
∆#
#

 = -
Z .

∆Z
∆- = -Y\

$(-)
\(-)

• For a small condition number, C:
• Small ∆x à small ∆y
• We call this a well conditioned problem

• For a large condition number, C:
• Small ∆x à large ∆y
• We call this a ill conditioned problem

This is NOT a lecture on numerical analysis ….

• Numerical analysis is a
complex topic well beyond the
scope of this lecture.

• The goal here is to make you
aware of it and the general
concept of well-conditioned vs
ill-condition problems … not
how to derive and work with
condition numbers.

68

… So rather than a long diversion into the details of numerical analysis, lets focus on a single problem numerical
analysts work on … how does the properties of floating point arithmetic influenced a computation?

Additional content
• Numerical Analysis
• Changing numbers of bits
• Compiler options
• A Few Exercises
– Exercises
– Solutions

69

Floating point arithmetic …just use : use lots of bits and hope for the best …

Is 64 bits enough? Is it too much? We’re guessing.

70

80

1970 1980 1990 2000

Bits

Year

CDC 60

2010

20

30

40

50

60

1940 1950 1960

Zuse 22

Univac, IBM 36

Cray 64 most vendors 64

x86 80 (stack only)

Source: John Gustafson from long long ago when he was at Intel

Quad Precision

• There are pathological cases where you lose all the precision in an answer, but
the more common case is that you lose only half the digits.

• Hence, for 32 or 64 bit input data, quad precision (113 significant bits) is
probably adequate to make most computations safe (Kahan 2011).

71

• IEEE 754TM defines a range of formats including quad (128)

binary32 binary64 binary128
P, digits 24 53 113
emax +127 +1023 +16383

Wider floating point formats turn compute bound
problems into memory bound problems

Energy implications of floating point
numbers: 32 bit vs. 64 bit numbers

Operation Approximate
energy consumed

today
64-bit multiply-add 64 pJ
Read/store register data 6 pJ
Read 64 bits from DRAM 4200 pJ
Read 32 bits from DRAM 2100 pJ

Source: S. Borkar, Intel. Data is for 32 nm technology ca. 2010

Simply using single precision in DRAM instead of double saves as much energy as 30 on-chip floating-point operations.

energy savings: replace 64 bit flops with 32 bit flops

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

%
 Energy saved replacing 64-bit

w
ith 32-bit flops

H
PL

M
onte

C
arlo

B
lack-

Scholes

C
PU

06-
C

actus

A crash
code

E3D
segsalt

N
A

M
D

-
stm

v

G
A

M
ESS

-si15h16

Source: Intel … based on a workload data set provided by Hugh Caffey (2010)

How do you decide where you can safely reduce precision?

Assume: energy scales linearly with #of bits, 64 bit FLOP
@ 200 pJ, 64 bit move DRAM to CPU @12000 pJ.

Maybe we don’t want Quad after all?
• If Performance/Watt is the goal, using Quad everywhere to

avoid careful numerical analysis is probably a bad idea.

75

How many bits do we really need?

76

J.Y.F. Tong, D. Nagle, and R. Rutenbar, “Reducing Power by Optimizing the Necessary Precision Range of Floating Point
Arithmetic,” in IEEE Transactions on VLSI systems, Vol. 8, No.3, pp 273-286, June 2000. [2] M. Stevenson, J. Babb,

They varied the
number of bits used

to see when the
accuracy degraded

Sphinx: speech recognition
ALVIN: Neural net trainer from SPECfp92
PCASYS: NIST finger print recognition
Bench22: image processing
Fast DCT: direct, 2D DCT

Notes to support the “how
many bits do we need” slide

Additional content
• Numerical Analysis
• Changing numbers of bits
• Compiler options
• A Few Exercises
– Exercises
– Solutions

78

Source: Ianna Osborne, CoDaS-HEP, July 19, 2023

Source: Ianna Osborne, CoDaS-HEP, July 19, 2023

Additional content
• Numerical Analysis
• Changing numbers of bits
• Compiler options
• A Few Exercises
– Exercises
– Solutions

81

Exercise: The machine epsilon
• When you compute the relative error between a result using real arithmetic, F𝑥, and the analogous

result using floating point arithmetic, 𝑥, we define the error in two different ways:
– Absolute error: 0𝑥 − 𝑥

– Relative error: 102010

• The relative error is normalized, so the smallest relative error is the distance between 1.0 and the
next largest floating point number. This goes by a number of names but it is traditionally called the
machine epsilon or 𝜀.

– Exercise … Part 1: Write a program that computes 𝜀.

– Exercise … Part 2: For IEEE 754 float, derive the value of 𝜀.

82

Exercise: Summation with floating point arithmetic

• We have provided a C program called sum.c

• In the program, we generate a sequence of floating point numbers (all greater
than zero).
– Don’t look at how we create that sequence … treat the sequence generator as a black box

(in other words, just work on the sequence, don’t use knowledge of how it was generated).

• Write code to sum the sequence of numbers. You can compare your result to the
estimate of the correct result provided by the sequence generator.
– Only use float types (it’s cheating to use double … at least to start with).

• Using what you know about floating point arithmetic, is there anything you can
think of doing to improve the quality of your sum?

83

Exercise: Refactoring functions to improve floating point behavior

• Evaluate the following function for large x
(x = 10k for k = 5,6,7,8 …)

84

𝑓 𝑥 =
1

𝑥# + 1 − 𝑥

• Can you refactor the function to make it numerically more stable?

Exercise: Compensated Summation.

• Summation is notorious for errors due to loss of precision when two numbers of widely different magnitudes are added.
• Define a correction that would account for this loss of precision? Use it with one of our summation problems to see if your

Compensated summation approach works.

85

Input: a sequence of N values, x[i] i=1,N

 correction = 0.0
 sum = 0.0

 for i = 1 to N:

 xcor = x[i] ⊚ correction

 tmpSum = sum + xcor

 correction = ????????

 sum = tmpSum
 }

Output: sum

sum is big, but xcor is small. à Low order digits of xcor are lost

apply a correction to x[i] to
account for bits lost in the
previous loop iteration

Note: It is cheating to look this up
online. With what we’ve covered and
the hints I’ve provided, you should be

able to figure this out on your own.

Additional content
• Numerical Analysis
• Changing numbers of bits
• Compiler options
• A Few Exercises
– Exercises
– Solutions

86

Finding the machine epsilon

• The rounding machine epsilon is the last number
added to one that yields a sum that is greater than
one.

• When rounding to nearest is used (the default in
IEEE 754) it is twice the size of the machine epsilon
we derived above. Why?

87

#include <stdio.h>
#define TYPE float
int main(). {
 TYPE one = (TYPE)1.0;
 TYPE eps = (TYPE)1.0;
 long iters = 0;
 while((one+(TYPE)eps)>one){
 eps = eps/(TYPE)2.0;
 iters++;
 }
 printf(”epsilon is 2 to the -%ld or %g\n",
 sizeof(TYPE),iters,eps);

}

• The machine epsilon is the gap between 1.0 and the closest number larger than one.

• For an IEEE 754 32 bit floating point number (F*(2,24,127,-126)). The number closest but larger than 1.0 is:

F*(Radix, Precision, emin, emax)

𝜀 = 1.00…1 2" − 1.00…0 2" = 0.00…1 2" = 25 75! = 25#&

solution

Exercise: Summation with floating point arithmetic

• We have provided a C program called sum.c

• In the program, we generate a sequence of floating point numbers (all greater
than zero).
– Don’t look at how we create that sequence … treat the sequence generator as a black box

(in other words, just work on the sequence, don’t use knowledge of how it was generated).

• Write code to sum the sequence of numbers. You can compare your result to the
estimate of the correct result provided by the sequence generator.
– Only use float types (it’s cheating to use double … at least to start with).

• Using what you know about floating point arithmetic, is there anything you can
think of doing to improve the quality of your sum?

88

solution

Exercise: Refactoring functions to improve floating point behavior

• Evaluate the following function for large x
(x = 10k for k = 5,6,7,8 …)

89

𝑓 𝑥 =
1

𝑥# + 1 − 𝑥

• For large x, 𝑥! + 1 ≈ 𝑥 so we expect problems with cancelation in the denominator.
• We can refactor the expression to remove the cancelation.

𝑓 𝑥 =
1

𝑥# + 1 − 𝑥
=

𝑥# + 1 + 𝑥
(𝑥# + 1 − 𝑥)(𝑥1 + 1 + 𝑥)

=
𝑥# + 𝑥

𝑥# + 1 − 𝑥# = 𝑥# + 1 + 𝑥

x 1
𝑥# + 1 − 𝑥

𝑥# + 1 + 𝑥

105 200000.223331 200000.000005
106 1999984.771129 2000000.000001
107 19884107.851852 20000000.000000
108 inf 200000000.000000

Solutions degrades
until divide by zero

solution

Exercise: The Kahan* Summation Algorithm

• Using the properties of floating point arithmetic, algorithms that reduce round-off errors can be designed.
• A famous one is the Kahan Summation Algorithm. Here it is in pseudo-code

90

Input: a sequence of N values, x[i] i=1,N

 correction = 0.0
 sum = 0.0

 for i = 1 to N:

 xcor = x[i] – correction

 tmpSum = sum + xcor

 correction = (tmpSum – sum) – xcor

 sum = tmpSum
 }

Output: sum

sum is big, but xcor is small. à Low order digits of xcor are lost

(tmpSum-sum) removes high order/common bits
through cancellation on subtraction.

What’s left are the bits provided by xcor

Subtract xcor so you’re left with the lost bits.

apply a correction to x[i] to
account for bits lost in the
previous loop iteration

*Professor William Kahan of UC Berkeley is the father of modern floating point arithmetic (IEEE-754)

solution

