Introduction to Performance Optimization and Tuning Tools

Steve Lantz, Cornell University

CoDaS-HEP Summer School, July 24, 2024

with thanks to Bei Wang, NVIDIA

Goals

- Give an overview of what is meant by performance optimization and tuning
- Provide basic guidance on how to understand the performance of a code using tools
- Provide a starting point for performance optimizations

Performance Optimization: What Is It? Why Do It?

- What is performance optimization?
 - Improving the efficiency of an application to make better use of a given hardware resource
 - Identifying bottlenecks and eliminating them where possible, then rechecking metrics until performance objectives are satisfied
 - Modifying code guided by one's understanding of the performance features of the given hardware (see prior presentations on "What Every Computational Physicist Should Know About Computer Architecture" and "Vector Parallelism on Multi-Core Processors")
- Why does performance optimization matter?
 - Energy efficiency is becoming increasingly important
 - Today's applications only use a fraction of the machine
 - Due to complex architectures, mapping applications onto architectures is hard

The Performance Tuning Cycle

What Do I Measure?

- Choose metrics which quantify the performance of your code
 - Time spent at different levels: whole program, functions, lines of code
 - Hardware counters can help you figure out the reasons for slow spots
- What are some easy ways to make **time** measurements?
 - Wrap your executable command in the Linux "time" command
 - Get an idea of overall run time: time ./my_exe (or /bin/time ./my_exe)
 - No way to zero in on performance bottlenecks
 - Insert calls to timers around critical loops/functions
 - gettimeofday(), MPI_Wtime(), omp_get_wtime()
 - Available in common libraries (system, MPI, OpenMP respectively)
 - Good for checking known hotspots in a small code base
 - Hard to maintain, require significant a priori knowledge of the code

Advantages of Performance Tools

- Performance tools (recommended)
 - Collect a lot of relevant data with varying granularity, cost and accuracy
 - Connect back to the source code (use -g compiler flag)
 - Analyze/visualize collected data using the tool
 - The learning curve is steep, but you can climb it gradually
- Tools generally work in one of two ways

Sampling

- Records system state at periodic intervals
- Useful to get an overview
- Low and uniform overhead
- Ex. Profiling

Instrumentation

- Records all events
- Provide detailed per event information
- High overhead for request events
- Ex. Tracing

What Can I Learn From Performance Tools?

- Where am I spending my time?
 - Find the hotspots
- Is my code memory bound or compute bound?
 - Memory bound code has lots of events like these (tracked by hardware counters):
 - L1/L2/L3 cache misses
 - TLB misses
 - Compute bound code has lots of events like these:
 - Pipeline stalls not due to memory events
 - Type conversions
 - Time spent in unvectorized loops
- Is my I/O inefficient?

Performance Tools Overview

- Basic OS tools
 - /bin/time
 - perf, gprof, igprof (from HEP)
 - valgrind, callgrind
- Hardware counters
 - PAPI API & tool set
- Community open source
 - HPCToolkit (Rice Univ.)
 - TAU (Univ. of Oregon)
 - Open|SpeedShop (Krell)

- Commercial products
 - Linaro Forge (DDT, MAP)
- Vendor supplied (free)
 - Intel Advisor, Intel VTune
 - Intel Trace Analyzer and Collector (MPI)
 - AMD μ Prof
 - CrayPat
 - NVIDIA Nsight Compute (CUDA)
 - NVIDIA pgprof (OpenACC)
 - AMD Omniprof (ROC)

No tool can do everything. Choose the right tool for the right task.

Linux Tool: *perf*

- Perf is a performance analyzing tool in Linux
 - *perf record*: measure and save sampling data for a single program
 - -g: enable call-graph (callers/callee information)
 - *perf report*: analyze the file generated by perf record, can be flat profile or graph
 - -*g*: enable call-graph (callers/callee information)
 - *perf stat*: measure total event count for a single program
 - -*e event-name-1,event-name-2*: choose from event names provided by *perf list*
 - *perf list*: list available hardware and software events for measurement
- When compiling the code, use the following flags for easier interpretation
 - -g: generate debug symbols needed to annotate source
 - -fno-omit-frame-pointer: provide stack chain/backtrace

Example: Finding Hotspots with perf

- Compile the code: *g++ -g -fno-omit-frame-pointer -O3 -DNAIVE matmul_2D.cpp -o mm_naive.out*
- Collect profiling data: *perf record -g ./mm_naive.out 500*
- Open the result: *perf report -g*

amples: 7K	of event	<pre>'cycles:uppp',</pre>	Event count (ap	prox.): 5629336320
Children	Self	Command	Shared Object	Symbol
99.95%	0.00%	mm_naive.out	libc-2.17.so	<pre>[.]libc_start_main</pre>
99.95%	0.00%	mm_naive.out	mm_naive.out	[.] main
99.69%	99.69%	mm_naive.out	mm_naive.out	<pre>[.] compute_naive</pre>
libc_	_start_mai	.n		
main				Droce "A
compute	e_naive			TIESS A
0.09%	0.09%	mm_naive.out	mm_naive.out	[.] init_matrix_2D
0.06%	0.06%	mm_naive.out	libc-2.17.so	[.]random
0.06%	0.06%	mm_naive.out	libc-2.17.so	[.]memset_sse2
0.03%	0.03%	mm_naive.out	[unknown]	<pre>[.] 0xffffffff8196c4e7</pre>
0.03%	0.00%	mm_naive.out	[unknown]	[.] 000000000000000
0.02%	0.02%	mm_naive.out	libc-2.17.so	[.]random_r
0.01%	0.01%	mm_naive.out	mm_naive.out	[.] rand@plt
0.01%	0.01%	mm_naive.out	ld-2.17.so	<pre>[.] do_lookup_x</pre>
0.01%	0.01%	mm_naive.out	libc-2.17.so	[.] _int_malloc
0.01%	0.01%	mm_naive.out	libc-2.17.so	<pre>[.] intel_check_word</pre>
0.00%	0.00%	mm_naive.out	ld-2.17.so	[.] check_match.9523
0.00%	0.00%	mm_naive.out	[unknown]	[.] 0x000000000c2698
0.00%	0.00%	mm_naive.out	ld-2.17.so	[.] dl sysdep start
0.00%	0.00%	mm_naive.out	ld-2.17.so	[.] dl main
0.00%	0.00%	mm_naive.out	ld-2.17.so	[.] dl load cache lookup
0.00%	0.00%	mm_naive.out	ld-2.17.so	[.] etext
0.00%	0.00%	mm_naive.out	ld-2.17.so	[.] _dl_map_object
0.00%	0.00%	mm_naive.out	ld-2.17.so	[.] libc memalign@plt
0.00%	0.00%	mm_naive.out	ld-2.17.so	[.] dl start user

Percent _attribute__((noinline)) void init_matrix_2D(double **A, double **B, double **C, int matrix_size){ #pragma omp parallel for for (int i=0; i<matrix_size; i++) {</pre> test %ecx,%ecx 401558 <init_matrix_2D(double**, double**, b8 ↓ jle __attribute__((noinline)) void init_matrix_2D(double **A, double **B, double **C, int matrix_size){ push %rbp lea -0x1(%rcx),%eax %rsp,%rbp mov push %r15 %r14 push mov %rsi,%r14 %r13 push 0x8(%rdi,%rax,8),%rsi lea %r12 push push %rbx 0x8(,%rax,8),%r13 lea ...to view a profile of %rdi,%r12 mov %rdx,%r15 mov sub \$0x18,%rsp the corresponding %rsi,-0x38(%rbp) mov nop 40: xor %ebx,%ebx nop assembler output for (int j = 0 ; j < matrix_size; j++) {</pre> A[i][j]=((double) rand() / (RAND_MAX)); 48: → callg rand@plt pxor %xmm0,%xmm0 (%r12),%rdx mov cvtsi2sd %eax,%xmm0 divsd 0x5e7(%rip),%xmm0 # 401ae8 <__dso_handle+0x60> movsd %xmm0,(%rdx,%rbx,1) B[i][j]=((double) rand() / (RAND_MAX)); → callq rand@plt pxor %xmm0,%xmm0 mov (%r14),%rdx cvtsi2sd %eax,%xmm0 C[i][i]=0.0; mov (%r15),%rax B[i][i]=((double) rand() / (RAND MAX)); divsd 0x5c7(%rip),%xmm0 # 401ae8 <__dso_handle+0x60> movsd %xmm0,(%rdx,%rbx,1) C[i][j]=0.0; movg \$0x0,(%rax,%rbx,1) \$0x8,%rbx add for (int j = 0 ; j < matrix_size; j++) {</pre> %rbx,%r13 CMD 4014e8 <init_matrix_2D(double**, double**, 48 ↑ jne add \$0x8,%r12 add \$0x8.%r14 add \$0x8,%r15 for (int i=0; i<matrix_size; i++) {</pre> -0x38(%rbp),%r12 cmp 4014e0 <init_matrix_2D(double**, double**, 40 ↑ jne 1 }

Example: Counting Cache Misses with *perf stat*

List of pre-defined events (to be used in -e):

- branch-instructions OR branches branch-misses bus-cycles cache-misses cache-references cpu-cvcles OR cvcles instructions ref-cycles
- alignment-faults bpf-output context-switches OR cs cpu-clock cpu-migrations OR migrations dummv emulation-faults maior-faults minor-faults page-faults OR faults task-clock
- L1-dcache-load-misses L1-dcache-loads L1-dcache-stores L1-icache-load-misses LLC-load-misses LLC-loads LLC-store-misses LLC-stores branch-load-misses branch-loads dTLB-load-misses dTLB-loads dTLB-store-misses dTLB-stores iTLB-load-misses iTLB-loads node-load-misses node-loads node-store-misses node-stores

[Hardware event] [Hardware event]

[Software event] [Software event] [Software event] [Software event] [Software event] [Software event] [Software event] [Software event] [Software event] [Software event] [Software event]

[Hardware cache event] [Hardware cache event] [Hardware cache event] [Hardware cache event] [Hardware cache event] [Hardware cache event] [Hardware cache event] [Hardware cache event] [Hardware cache event] [Hardware cache event] [Hardware cache event] [Hardware cache event] [Hardware cache event] [Hardware cache event] [Hardware cache event] [Hardware cache event] [Hardware cache event] [Hardware cache event] [Hardware cache event] [Hardware cache event]

- The *perf list* command lists all available CPU counters
 - Check *man perf event open* to see what each event measures
- The *perf stat* command instruments and summarizes selected CPU counters

perf stat -e cpu-cycles, instructions, L1-dcacheloads,L1-dcache-load-misses ./mm naive.out 500

Performance counter stats for './mm naive.out 500':

5,564,503,540 cpu-cycles 10,063,662,841 3,767,490,743 1,475,374,174

instructions L1-dcache-loads L1-dcache-load-misses

1.691104619 seconds time elapsed

Make changes, see if L1 load misses improve, e.g.

How Do I Fix It? Typical Pitfalls on a Single Core

- Scattered memory accesses that constantly bring in new cache lines
 - Storing data as an array of structs (AoS) instead of a struct of arrays (SoA)
 - Looping through arrays with a large stride

More cache lines ⇒ data must be fetched from more distant caches, or from RAM

	Registers	L1	L2	LLC	DRAM
Speed (cycle)	1	~4	~10	~30	~200
Size	< KB	~32KB	~256KB	~35MB	10-100GB

• Mismatched types in assignments

float x=3.14; //bad: 3.14 is a double
float s=sin(x); //bad: sin() is a double
precision function
long v=round(x); //bad: round() takes and
returns double

float x=3.14f; //good: 3.14f is a float
float s=sinf(x); //good: sin() is a single
precision function
long v=lroundf(x); //good: lroundf() takes
float and returns long

Intel Advisor

Two very useful analyses in Intel Advisor will be highlighted:

- Vectorization advisor
 - Identify the hotspots where your efforts pay off the most
 - Provide call graph information
 - Check memory access pattern, dependencies, more
 - Provide vectorization information from vectorization report
 - Identify the performance and vectorization issues
- Roofline
 - How much performance is being left on the table
 - Where are the bottlenecks
 - Which ones can be improved
 - Which ones are worth improving

Workflow of Vectorization Advisor

- Survey: profile where the code spends most of its time; then, combine it with vectorization reports from loops to provide suggestions for improvement
- **Trip Counts**: count all operations to generate a roofline plot
- Memory Access Patterns (MAP): see how you access the data
- **Dependencies**: determine if it is safe to force vectorization

Advisor Advises You About Performance Issues

Image: Bapsed time: 4.12s Image: Vectorized Image: Solution of the so	් Fil	LTER: All Modules	All Source	es 🔻 Loops	And Functions 🔻	All Threads 🔻		¢ c	ustomize	View OF	
🗏 Summary 🤣 Survey & Roofline 📲 Refinement Reports										EL AUVI	SUK ZUIY
Z III III Function Coll Sites and Leans	6	Performance	CRU Time	>	Tuno	Why No Voctorization?	Vectorize	ed Loops		≫	Instruction
Q	0	Issues	Self Time 🔻	Total Time	туре	why no vectorization?	Vecto	Efficiency	Gain	VL (V	Traits
Solution (loop in MoveParticles at nbody.cpp:76)		2 Possible ine	. 4.090s 🗖	4.090s	Vectorized (Body)		AVX512	~53%	8.47x	16	Appr. Reci
■ Some MoveParticles			0.010s[4.100s	Inlined Function						2-Source P
<pre> f _start </pre>			0.000sl	4.100s	Function						
□O [loop in main at nbody.cpp:55]		🔋 1 Data type con	. 0.000s[4.100s	Scalar	inner loop was already					Appr. Recip
🛛 🕈 main			0.000s(4.100s	Function						2-Source P
Sector Secto		🔋 1 Data type con	. 0.000s(4.100s	Scalar	compile time constraint					Divisions; F
Source Top Down Code Analytics Assembly @ Recomme	endatio	why No Vecto	rization?					Possit	ole ineffic	ient mem	lory access
All Advisor-detectable issues: <u>Crit Fertran</u> Possible inefficient memory access patte	rns p	present						Possit patterr Con patte	ole ineffic ns presen firm ineffici erns	t t ent memory	access
Inentisient memory access patterns may result in significant	vector	eede execution slowdo	own or block a	utomatic vector	ization by the compile	r. Improve performance by inve	estigating.	Data ti		vreione nr	recent
Confirm inefficient memory access patterns								Use	the smalles	st data type	esent
There is no contribution memoriant memory access par	terns a	re present. To fix: Run	a Memory Ac	cess Patterns a	analysis.						
Data type conversions present											
There are multiple data types within loops. Utilize hardware y	oeteriz	ation support more eff	ectively by avo	oiding data type	conversion.						
Use the smallest data type											
The source loop contains data types of different widths	. To fix	: Use the smallest dat	a type that giv	es the needed	precision to use the er	ntire vector register width.					
Intel, and the Inte *Oth	el logo er nam	are trademarks of Intel es and brands may be © Intel C	Corporation in claimed as the orporation	n the U.S. and/o e property of ot	or other countries. hers.						

Roofline Analysis: What Is It?

FLOP/byte: Arithmetic intensity

What Does Roofline Analysis Tell You?

- The "roofline" is a performance ceiling related to hardware characteristics
 It tells you the highest flop/s rate possible on a specific CPU for a given piece of code
- The arithmetic intensity or AI (flop/byte) of a code is a software characteristic
 - It tells you what part of the roofline(s) your code lies under
 - Code with low AI is limited by its need to load/store data from/to memory (sloped roofs)
 - Otherwise, it is limited by the maximum flop/s rate of the CPU (flat roofs)
 - Thus, roofline analysis tells you whether your code is *memory bound* or *compute bound*
- Investigate functions that fall way below the roofline for their AI value
 - Try to modify such functions so they approach the highest feasible roof
 - It can be shown that the AI needed to reach *theoretical peak* flop/s (the highest flat roof) implies that 50% of operands are vector constants: they never leave registers!

Towards Peak Flop/s: Arithmetic Intensity

- Arithmetic intensity or AI is the number of flops executed by a code divided by the bytes of memory that are required to perform the computations
 - Again, AI is an intrinsic property of the code
- Even a simple stride-1 loop may not get the peak flop/s rate, if its AI is low
 - VPU becomes stalled waiting for loads and stores to complete
 - Delays become longer as the memory request goes further out in the hierarchy from L1 to L2 (to L3?) to RAM
 - Even if the right vectors are in L1 cache, there is limited bandwidth from L1 to registers!
- If the goal is to maximize flop/s, you'll want to try to improve the AI value
- Also want threads to work on *independent*, cache-size chunks of data
 - Watch out for false sharing, where 2 threads fight needlessly over a cache line

Effect of AI and Caches on GFLOP/s

Intel VTune

- Covers all aspects of execution
 - Hotspots
 - Processor microarchitecture
 - Memory accesses
 - Threading
 - I/O
- Flexible
 - GUI in Linux, Windows and macOS
 - Drills down to source code, assembly
 - Easy setup, no special compiling
- Shared memory only
 - Serial or OpenMP
 - MPI, but only within a single node

```
INTEL VTUNE AMPLIFIER 2019
      HPC Performance Characterization HPC Performance Characterization 🝷 🕐
Analysis Configuration Collection Log Summary Bottom-up
 ✓ Elapsed Time<sup>②</sup>: 3.383s
                         SP GFLOPS . 0.000
                         DP GFLOPS 2.873
                         x87 GFLOPS 2: 0.000
             Effective CPU Utilization <sup>(2)</sup>: 7.3%
                         Average Effective CPU Utilization 2: 2.332 out of 32
               Serial Time (outside parallel regions)<sup>(2)</sup>: 0.062s (1.8%)
               Estimated Ideal Time <sup>(1)</sup>: 1.898s (56.1%)
                                    OpenMP Potential Gain <sup>®</sup>: 1.423s (42.1%) ▶
                         Solution of the second seco
                                    This section lists OpenMP regions with the highest potential for performance improvement. The Potential Gain metric shows the elapsed time that could be saved if the region was optimized to have
                                    no load imbalance assuming no runtime overhead.
                                    OpenMP Region
                                                                                                                                                                                          OpenMP Potential Gain<sup>®</sup> (%)<sup>®</sup>
                                                                                                                                                                                                                                                                                                     OpenMP Region Time
                                                                                                                                                                                                                                         1.423s 42.1%
                                                                                                                                                                                                                                                                                                                                                        3.321s
                                    compute triangular$omp$parallel:4@unknown:46:53
```

*N/A is applied to non-summable metrics.

S Effective CPU Utilization Histogram

```
    ✓ Memory Bound <sup>(2)</sup>: 33.7% <sup>↑</sup> of Pipeline Slots
Cache Bound <sup>(2)</sup>: 16.2% of Clockticks
    (5) DRAM Bound <sup>(2)</sup>: 0.6% of Clockticks
NUMA: % of Remote Accesses <sup>(2)</sup>: 0.0%
    (5) Bandwidth Utilization Histogram
```

Sectorization ^②: 0.0% ▼ of Packed FP Operations

Instruction Mix:		
SP FLOPs [®] :	0.0%	of uOps
⊘ DP FLOPs [®] :	22.9%	of uOps
Packed [®] :	0.0%	from DP FP
Scalar ⁽²⁾ :	100.0% 🏲	from DP FP
x87 FLOPs [®] :	0.0%	of uOps
Non-FP ⁽²⁾ :	77.1%	of uOps
FP Arith/Mem Rd Instr. Ratio ⁽²⁾ :	0.545	
FP Arith/Mem Wr Instr. Ratio ⁽²⁾ :	1.741	

 \odot Top Loops/Functions with FPU Usage by CPU Time

This section provides information for the most time consuming loops/functions with floating point operations.

Function	CPU Time	% of FP Ops $^{}$	FP Ops: Packed ^③	FP Ops: Scalar ^②	Vector Instruction Set [®]	Loop Type 🛛
[Loop at line 49 in compute_triangular\$omp\$parallel_for@46]	7.397s	26.8%	0.0%	100.0% 🎙		Body
*N/A is applied to non-summable metrics.						

Cornell University Center for Advanced Computing

VTune is a (Very) Full System Profiler

- Memory Access Efficiency
 - Stalls by memory hierarchy; bandwidth utilization
 - Tip: Use Memory Access analysis
- Vectorization: FPU Utilization
 - FLOPS estimates from sampling
 - Tip: Use Intel Advisor for precise metrics and vectorization optimization
- Threading: CPU Utilization
 - Serial vs. parallel time; top OpenMP regions by potential gain
 - Tip: Use hotspot OpenMP region analysis for more detail
- MPI Imbalance Metric
 - Metric for performance of rank on critical path
 - Computational bottlenecks and outlier rank behavior

Hotspots Analysis

Thread Timelines Showing "Spin and Overhead"

(Function / Call Stack CPU Time * (*) (*) (*) (*) Instruction (*) (*) Instruction (*) (*) Instruction (*) (*) (*) Instruction (*) (*) (*) Instruction (*)	Iping: Function / Call Stack															
CPUTURe * Substrate Substrat Substrat	Function / Call Stack	777									• 🛠 🔎 •					
Function / Call Stack Effective Time by Utilization Spin Time (ii) Owner Scheduling Reduction Atomic Other mpute_triangularSoppSparal[_fo 7.247.9 0.0	Function / Call Stack	1997	CPU Time 🔻													
Interview Description Other Creation Scheduling Reduction Atomics Other Atomics Ato	Tunoion / Our Ottok	Spin Time Overhead Time									Instructions					
mpute_tinangularSompSarallel_to 7.2475 Ob O		Idle Poor Ok Ideal Ov	Imbalance or Serial Spinning	k Contention	Other	Creation	Scheduling	Reduction	Atomics	Other	1					
NTEFNAL_25_stormp 05 05 03 03 05 0	mpute_triangular\$omp\$parallel_fo 7.	247s	0s	0s	0s	0s	0s	0s	0s	0s	30,069,0					
nc@odminifieli_775db9 0.060s 0.060s 0.060s 0.060s 0.060s 0.060s 0.06 0.06	NTERNAL_25src_kmp_ba	0s	4.305s	0s	0s	0s	0s	0s	0s	0s	4,862,0					
nc@Odffiffinitial1775c70 OdfOs	nc@0xfffffff81775db9 0.).085s	0s	0s	0s	0s	0s	0s	0s	0s						
np.fmg.namve-unsigned long long 0s 0s <td>nc@0xfffffff81775c70 0.</td> <td>).060s</td> <td>0s</td> <td>0s</td> <td>0s</td> <td>0s</td> <td>0s</td> <td>0s</td> <td>0s</td> <td>0s</td> <td>39,</td>	nc@0xfffffff81775c70 0.).060s	0s	0s	0s	0s	0s	0s	0s	0s	39,					
co@0xffffff81042760 0.020s 0.020s 0.05	p_flag_native <unsigned long="" long<="" td=""><td>0s</td><td>0.045s</td><td>0s</td><td>0s</td><td>0s</td><td>0s</td><td>0s</td><td>0s</td><td>0s</td><td>234,</td></unsigned>	0s	0.045s	0s	0s	0s	0s	0s	0s	0s	234,					
cc@oxfffffff10e1e00 0.020s 0.020s <th< td=""><td>nc@0xfffffff810f2760 0.</td><td>J.020s</td><td>0s</td><td>0s</td><td>0s</td><td>0s</td><td>0s</td><td>0s</td><td>0s</td><td>0s</td><td>13,</td></th<>	nc@0xfffffff810f2760 0.	J.020s	0s	0s	0s	0s	0s	0s	0s	0s	13,					
mi_si] 0.020s 0.015s 0.05 <td>nc@0xfffffff810e1e00 0.</td> <td>0.020s</td> <td>0s</td> <td>0s</td> <td>0s</td> <td>0s</td> <td>0s</td> <td>0s</td> <td>0s</td> <td>0s</td> <td>52,</td>	nc@0xfffffff810e1e00 0.	0.020s	0s	0s	0s	0s	0s	0s	0s	0s	52,					
c@0xfffffff11046a0 0.015s 0.015s 0.015s 0.010s	misi] 0.).020s	0s	0s	0s	0s	0s	0s	0s	0s						
c@0xfffffff10db6a0 0.010s	nc@0xfffffff811024e0 0.	J.015s	0s	0s	0s	0s	0s	0s	0s	0s						
c_0 c_0 <thc< td=""><td>nc@0xfffffff810db6a0 0.</td><td>).010s</td><td>0s</td><td>0s</td><td>0s</td><td>0s</td><td>0s</td><td>0s</td><td>0s</td><td>0s</td><td>13.</td></thc<>	nc@0xfffffff810db6a0 0.).010s	0s	0s	0s	0s	0s	0s	0s	0s	13.					
Q0xfffffff10e0210 0.010s 0	c@0xfffffff8137dd80).010s	05	05	05	05	05	05	05	05	20,					
C@Oxfiffff81768650 0.010s 0.010s 0.05	c@0xfffffff810e0210	0.010s	00	00	05	05	20	20	20	20	39					
C@Oxfifffff1034220 0.0105	c@0xfffffff81768650 0	0105	05	05	05	05	05	05	05	00	26					
Occover 0.0105	c@0xfffffff81034820	0105	05	05	00	00	00	00	00	00	13					
0.0105 0.0105	c@0xfffffff810de8c0 0	0105	05	05	05	05	05	05	05	05	52					
Qey Minifer Foread #Q (TID: 137225) 0.015 s 0.05	c@0xfffffff8176898f	0105	05	05	05	05	00	05	05	05	02					
c@oxffffff8176b640 0.005 0.05 <td< td=""><td>ved vield</td><td>00</td><td>03</td><td>05</td><td>0.005c</td><td>03</td><td>00</td><td>05</td><td>03</td><td>00</td><td></td></td<>	ved vield	00	03	05	0.005c	03	00	05	03	00						
C@0xffffff176cb3 0.005 l 0.00	ed_yield	005	00	05	0.0005	05	05	05	05	05	12					
C@Oxfifffff81765740 0.0055 <td< td=""><td>0.000x111111181700040</td><td>0055</td><td>US</td><td>05</td><td>05</td><td>05</td><td>05</td><td>05</td><td>05</td><td>05</td><td>13,</td></td<>	0.000x111111181700040	0055	US	05	05	05	05	05	05	05	13,					
Cd2/Ximimi21/60/40 0.005s	10 (20 x 1111111181 / 00 5 D 3 0)	0055	US	US OS	0s	05	US OS	05	05	0s						
\u00ed cdg/xmmm31/r6c1e 0.005s	1C@0XIIIIIII8176D740 0.	2005s	US	US	US 0-	05	US	0s	05	US 0-						
C@/V.fiffitted/102200 0.005 ≤ 0.05 ≤		2005s	US	US	US 0-	05	US	US OF	05	US 0-						
Cody Oxfittiffield a2e0 0.005 s <	10/2000 00000000000000000000000000000000	1.0055	Us	US	US	US 0-	US	US	US OF	US						
Ccg/0xmmm811r/360 0.05 0.5	0.000000000000000000000000000000000000	1.0055	US	0s	US	US	0s	US	US	US						
	1c@0xmmm81117360	.0055	US	US	US	US	US	US	US	US						
OMP Master Thread #0 (TID: 137225) Image: CPU Time OMP Worker Thread #1 (TID: 137273) Image: CPU Time OMP Worker Thread #2 (TID: 137274) Image: CPU Time	Q: + = ⊮ ⊮	0s 0.5s	1s 1.5s	2s		2.5s		3s	. 🖉 Th	read	•					
OMP Worker Thread #2 (TID: 137274)	OMP Master Thread #0 (TID: 137225)				_					CPU Time	e					
	OMP Worker Thread #2 (TID: 137274)				and i					Spin and	Overhead Ti					
	OMD Worker Thread #2 (TID: 127275)									CIUCKUCK	Sample					
Own P worker (Inc. 13/2/5) Image: CPU Time	OMP Worker Thread #3 (TID: 137275)								CPL	J Time						
CPU Time										CPU Time	9					

How Do I Fix It? Typical Pitfalls in Multithreading

- Insufficient parallelism: not enough work to divide among threads
- False sharing: threads alter different variables in the same cache line \downarrow
 - Data aren't really shared, but caches must stay coherent
 - Data always travel together in "cache lines" of 64 bytes
- Load imbalance
 - Other threads wait idly for the overworked one
- Needless synchronization
 - Use private thread storage to avoid synchronization
- Non-optimal memory placement
 - Memory is actually allocated on first touch
 - Thread that touches first has fastest access (NUMA)

https://software.intel.com/en-us/articles/avoiding-andidentifying-false-sharing-among-threads

