
Performance Case Study: Charge Clusterization

Louis-Guillaume Gagnon (UC Berkeley)

CoDaS-HEP 2024
2024/07/24

1 / 23

Introduction: What is charge clusterization?

2 / 23

Introduction: What is charge clusterization?

▶ Charged particle ionizes Si sensor

▶ Charge detected via bump bond to readout

source

▶ Si sensor not segmented

▶ 2D matrix defined by bump bonds

ATLAS ID pixel chip. source 3 / 23

https://doi.org/10.1016/j.nima.2009.01.098
https://doi.org/10.1088/1748-0221/3/08/S08003

Introduction: What is charge clusterization?

▶ Charge can be deposited in > 1 pixel: Incident angle, drift in B field, cluster merging, δ-rays, . . .
▶ Pixel chip will typically readout individual pixels
▶ Clusterization: Forming charge clusters out of individual pixels (& estimate crossing position)

4 / 23

Introduction: What is charge clusterization?

▶ Example: Timepix detector module

▶ Note that module is sparsely activated

5 / 23

Introduction: Why do we need to optimize this?

▶ Run 4: Circa 2027, first run with HL-LHC

▶ Luminosity increase: very challenging
for track reconstruction!

2020 2022 2024 2026 2028 2030 2032 2034 2036

Year

0

10

20

30

40

50

ye
ar

s]
⋅

A
nn

ua
l C

P
U

 C
on

su
m

pt
io

n
 [M

H
S

06

=55)µRun 3 (=88-140)µRun 4 (=165-200)µRun 5 (

2022 Computing Model - CPU

Conservative R&D
Aggressive R&D
Sustained budget model
(+10% +20% capacity/year)

ATLAS Preliminary

▶ Luminosity increase strains CPU budget

▶ Tracking is a large contribution: Needs R&D

▶ Must speedup every part of the tracking chain!

6 / 23

Introduction: ACTS

▶ ACTS: experiment-independent toolkit for track
reconstruction

▶ Emphasis on long-term maintainable code and
optimized computing and physics performance

▶ Funded by IRIS-HEP!

▶ ACTS used in published physics results: ATLAS, FASER

▶ ACTS integration in progress: ALICE, CEPC, ePIC,
LDMX, Lohengrin, NA60+, sPhenix, STFC, . . .

▶ ATLAS in process of migrating tracking code to ACTS
▶ More information:

▶ Overview paper: [2106.13593]
▶ Project webpage: acts.readthedocs.io
▶ Code repository: github.com/acts-project/acts

7 / 23

https://arxiv.org/abs/2106.13593
https://acts.readthedocs.io
https://github.com/acts-project/acts/

The ACTS clusterisation algorithm, pre-2022

Algorithm 1 createClusters

Input: pixels, unordered vector of activated pixels
1: map ← hashMap(pixels) // index → pixel
2: for all pixel in map do
3: if not pixel .used() then
4: fillCluster({pixel}, pixel ,map)
5: end if
6: end for

Algorithm 2 fillCluster

1: for i in neighbourIndices(pixel) do
2: if pixel ′ ← map.find(i) & not pixel ′.used()

then
3: cluster ← cluster + {pixel ′}
4: fillCluster(cluster , pixel ′,map)
5: end if
6: end for

c b

a

▶ fillCluster({a}, a, map)
▶ fillCluster({a, b}, b, map)

▶ fillCluster({a, b, c}, c, map)
▶ . . .

▶ . . .

▶ . . .

▶ =⇒ {a, b, c}
8 / 23

The ACTS clusterisation algorithm, pre-2022

This algorithm has many desirable characteristics! E.g.
▶ Uses efficient hash map datastructure

▶ Creation is O(n)
▶ Lookups are O(1)

▶ Elegant implementation based on recursive algorithm

▶ Single map traversal that yields all clusters

▶ Unordered traversal: no need to sort the input

9 / 23

The ATLAS clusterization algorithm

Algorithm 3 createConnectionsGraph

Input: pixels, unordered vector of activated pixels
1: pixels ← sorted(pixels) // sort by col., then row
2: graph← emptyGraph()
3: for all pixel in pixels do
4: for all pixel ′ in pixels.forwardOf (pixel) do
5: graph.connect(pixel , pixel ′)
6: end for
7: end for

Algorithm 4 createClusters

1: label ← 1
2: for vertex in graph do
3: if not vertex .labeled() then
4: labelAllConnected(vertex , label)
5: end if
6: label ← label + 1
7: end for
8: clusters ← createClusters(pixels) // . . .

=⇒
1 1

1

10 / 23

The ATLAS clusterisation algorithm, pre-Run 4

This algorithm has many question marks E.g.

▶ Uses a graph datastructure: creation is non-trivial

▶ Algorithm relies on ordered traversal to create graph: needs sorting

▶ Algorithm now mix of non-trivial imperative loop & recursion

▶ Two passes needed to create clusters: Record connections, then walk the graph

11 / 23

Which is faster?

12 / 23

Which is faster?

13 / 23

Why?

▶ Naively, I first thought it would be the other way around! (c.f. my notes at the time)

▶ Why? Two main reasons I can think of:

1. The single-pass strategy is suboptimal

2. Input data is sparse but algorithm not taking full advantage

14 / 23

1. The single-pass strategy is suboptimal

▶ Counter-intuitively, it can be faster to solve an intermediate problem before solving the main one!

▶ In this case, single-pass algo is unable to create partial clusters and reconcilse later!

▶ Time is wasted checking every neighbors (which ensure creation of whole clusters)

▶ Better algorithm: Record connections first, then create clusters
=⇒ Only need to check for connections on one side of pixel: Less work!

*

*

*

*

Key insight: Pick the right algorithm!

15 / 23

Input data is sparse but algorithm not taking full advantage

▶ Remember: on average, pixel detector modules are sparsely activated

▶ With sparse data, optimal data representation is usually different from dense case!
▶ Note that ACTS is using a sparse representation: an index map!

▶ But it queried every neighbor indices, as if the module was densely activated!

▶ Better representation: simple vector of activated pixels, sorted by position

▶ In a nutshell, with sorted list you can ask:
”Give me the closest cell, I will check if it’s a neighbor”

▶ For sparse data, it is better than asking:
”give me the neighboring cell in DIRECTION if it exists”

Key insight: Know your data!

16 / 23

Can we do better?

▶ I will now make a bold claim: The Athena algorithm solves the wrong problem!

▶ Do we really care about the exact way the pixels are connected?

▶ What if, instead, the algorithm would:

1. Assign a label to each pixel, e.g.

2. Keep track of relationships between those labels

=⇒ Can use “Union Find”, a.k.a “Disjoit Set Forest” datastructure

17 / 23

The new ACTS algorithm

The Hoshen-Kopelman algorithm

▶ For each active pix, search backward neighbors

▶ If there are none, allocate a new cluster label
▶ If there are connections:

1. re-use one of the label
2. mark all connected labels as equivalent

▶ Second pass: “Merge” labels based on result

▶ These operations are efficiently supported
by the disjoint set forest!

150 200 250 300 350 400
310×

Number of Pixel Clusters

1

1.5

2

2.5

3

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

[A
.U

.]

 RMS±Current Athena, Mean
 RMS±ACTS in Athena, Mean

ATLAS Simulation Preliminary
 = 14 TeV, HL-LHC, ITk Layout: 03-00-00s

 = 200〉µ〈, tt
ACTS v29.1.0
Athena 24.0.12

Key insight: Pick the right datastructure!

18 / 23

https://en.wikipedia.org/wiki/Hoshen%E2%80%93Kopelman_algorithm

Future Outlook: Charge Clusterization on GPU?

▶ Promising results from traccc project
▶ Implementation of a similar algorithm FastSV
▶ Table: Scaling vs N. of Si sensor modules to process

credit: Stephen Swatman, ACTS Workshop 2023
19 / 23

https://github.com/acts-project/traccc
https://indico.cern.ch/event/1295479/contributions/5616089/attachments/2749271/4784798/Massively_Parallel_Clustering_Algorithm_R_D_in_ACTS-2.pdf

Conclusion

=⇒ Know your data
=⇒ Pick the right algorithms

=⇒ Pick the right datastructures
=⇒ Always benchmark

20 / 23

It’s time for . . .

Things you didn’t know you needed

Benchmarking!?

▶ My laptop: 6-core i7-10850H CPU @ 2.70 GHz with hyperthreading
▶ Turned off turbo boost for reproducible results

▶ echo 1 > /sys/devices/system/cpu/intel pstate/no turbo

▶ Set performance mode for CPU governor
▶ cpupower frequency-set -g performance

▶ Pick a core, disable hyperthreading for it
▶ cat /sys/devices/system/cpu/cpu0/topology/thread siblings list
▶ echo 0 > /sys/devices/system/cpu/cpu6/online

▶ Run jobs with minimum niceness to avoid yielding to other thread
▶ nice -20 <command>

▶ Run jobs with maximum CPU affinity to avoid context switches
▶ taskset -c 0 <command>

▶ Monitor temperature sensors
▶ acpi -t

▶ Close potential resource-hungry programs, do nothing else while job is running

▶ Check timing distributions for outliers

▶ Verify that results hold over multiple runs

22 / 23

Benchmarking!?

▶ Very easy to get this wrong. . .
▶ Check out: LIKWID

▶ Probe the hardware topology of your device
▶ Microbenchmark suite to characterize your device
▶ Enforce thread/core affinity of a program
▶ Control CPU-level settings, e.g. frequencies, hyperthreading, . . .
▶ Measure performance metrics (Can use other programs like perf as backend!)
▶ Helpers for benchmarking openMP/MPI applications
▶ Helpers for making performance plots
▶ Extensive documentations
▶ . . . and more!

23 / 23

https://github.com/RRZE-HPC/likwid

