Louis-Guillaume Gagnon (UC Berkeley)

CoDaS-HEP 2024
2024/07/24

Introduction: What is charge clusterization?

2/23

» Charged particle ionizes Si sensor » Si sensor not segmented

» Charge detected via bump bond to readout » 2D matrix defined by bump bonds

, HV guard ring

TypeQ connector
readout
electronics

barre|
pigtai

bump-bond

decoupling
capacitors

sensor

track

glue
™T sensor

source ATLAS ID pixel chip. source

3/23

https://doi.org/10.1016/j.nima.2009.01.098
https://doi.org/10.1088/1748-0221/3/08/S08003

charged particle charged particles Aj charged particle

250 pm

@ (b) ©

» Charge can be deposited in > 1 pixel: Incident angle, drift in B field, cluster merging, d-rays, ...
» Pixel chip will typically readout individual pixels
» Clusterization: Forming charge clusters out of individual pixels (& estimate crossing position)
4/23

» Example: Timepix detector module

» Note that module is sparsely activated

250 f s &, . L5
sensor chip (e.g. silicon) e °
high resistivity n-type silicon 200 ’
aluminium layer . o . ° —
ko) 1 3
....... 5 X L o =
i+ 53.150 » ° @ o
" =2
® 3 o [
100
© =
< . o e 05 0
50 °l®
e
&

50 100 150 200 250
X-axis (pixel)

5/23

Introduction: Why do we need to optimize this?

Run 3 (1=55) Run 4 (1=88-140) Run 5 (1=165-200)
T L e e |

S0 ATLAé I‘3r‘eiiminary
2022 Computing Model - CPU

»

LAS

PERIMENT

HL-LHC tf event in ATLAS ITK 401« conservative R&D 4'." -
= v Aggressive R&D o 2]
— Sustained budget model 28]
30 (+10% +20% capacitylyear) y —
.“‘]
.]
! G|
20 ;

10

Annual CPU Consumption [MHSO6Gyjears]

P IR | [Ll
2020 2022 2024 2026 2028 2030 2032 2034 2036

0,

Year

> Run 4: Circa 2027, first run with HL-LHC » Luminosity increase strains CPU budget

» Luminosity increase: very challenging >

‘ . e Tracking is a large contribution: Needs R&D
or track reconstruction!

» Must speedup every part of the tracking chain!

6/23

Introduction: ACTS

» ACTS: experiment-independent toolkit for track
reconstruction

» Emphasis on long-term maintainable code and .»

optimized computing and physics performance
» Funded by IRIS-HEP!
@

» ACTS used in published physics results: ATLAS, FASER

» ACTS integration in progress: ALICE, CEPC, ePIC,
LDMX, Lohengrin, NA60+, sPhenix, STFC, ...
» ATLAS in process of migrating tracking code to ACTS o
» More information: v
» Overview paper: [2106.13593]

» Project webpage: acts.readthedocs.io
» Code repository: github.com/acts-project/acts

7/23

https://arxiv.org/abs/2106.13593
https://acts.readthedocs.io
https://github.com/acts-project/acts/

The ACTS clusterisation algorithm, pre-2022

Algorithm 1 createClusters Algorithm 2 fillCluster
Input: pixels, unordered vector of activated pixels 1: for i in neighbourindices(pixel) do
1: map < hashMap(pixels) // index — pixel 2. if pixel’ « map.find(i) & not pixel’.used()
2: for all pixel in map do then
3. if not pixel.used() then 3: cluster < cluster + {pixel}
4: fillCluster({ pixel }, pixel, map) 4; fillCluster(cluster, pixel’, map)
5. end if 5. end if
6: end for 6: end for

» fillCluster({a}, a, map)
» fillCluster({a, b}, b, map)
» fillCluster({a, b, c}, c, map)
> ..

|
» — {a,b,c}

8/23

This algorithm has many desirable characteristics! E.g.
» Uses efficient hash map datastructure

» Creation is O(n)
> Lookups are O(1)

» Elegant implementation based on recursive algorithm
» Single map traversal that yields all clusters
» Unordered traversal: no need to sort the input

9/23

The ATLAS clusterization algorithm

Algorithm 3 createConnectionsGraph Algorithm 4 createClusters
Input: pixels, unordered vector of activated pixels 1: label <1
1: pixels + sorted(pixels) // sort by col., then row 2: for vertex in graph do
2: graph < emptyGraph() 3. if not vertex.labeled() then
3: for all pixel in pixels do 4 labelAllConnected (vertex, label)
4. for all pixel’ in pixels.forwardOf (pixel) do 5. endif
5: graph.connect(pixel, pixel”) 6: label < label + 1
6: end for 7: end for
7: end for 8: clusters < createClusters(pixels) // ...

10/23

This algorithm has many question marks E.g.
» Uses a graph datastructure: creation is non-trivial
» Algorithm relies on ordered traversal to create graph: needs sorting
» Algorithm now mix of non-trivial imperative loop & recursion
» Two passes needed to create clusters: Record connections, then walk the graph

11/23

12/23

= 100
i ggt 5TeVZ } 3
° E i7-10850H CPU @ 2.70GHz vt]
E 80; ® Athena * =
's 700 * et bo =
c E E
& 60— o E
w = |
g so- s
. E . L] J
2 30; ¢ o‘+‘ i E
B PR E

200 . Lot E
10% ..o‘.“ é
Ojllzl‘\\\\||\\\\\||\\\\|\\\\\|\\\:

0 50 100 150 200 250 300

Module Occupancy [N. of Pixels]

13/23

» Naively, | first thought it would be the other way around! (c.f. my notes at the time)

» Why? Two main reasons | can think of:

1. The single-pass strategy is suboptimal
2. Input data is sparse but algorithm not taking full advantage

14/23

1. The single-pass strategy is suboptimal

» Counter-intuitively, it can be faster to solve an intermediate problem before solving the main one!

» In this case, single-pass algo is unable to create partial clusters and reconcilse later!
» Time is wasted checking every neighbors (which ensure creation of whole clusters)

» Better algorithm: Record connections first, then create clusters
= Only need to check for connections on one side of pixel: Less work!

15/23

Input data is sparse but algorithm not taking full advantage

» Remember: on average, pixel detector modules are sparsely activated

» With sparse data, optimal data representation is usually different from dense case!
» Note that ACTS /s using a sparse representation: an index map!
» But it queried every neighbor indices, as if the module was densely activated!

» Better representation: simple vector of activated pixels, sorted by position

» In a nutshell, with sorted list you can ask:
"Give me the closest cell, | will check if it's a neighbor”

» For sparse data, it is better than asking:
"give me the neighboring cell in DIRECTION if it exists”

16/23

Can we do better?

» | will now make a bold claim: The Athena algorithm solves the wrong problem!
» Do we really care about the exact way the pixels are connected?

» What if, instead, the algorithm would:

1. Assign a label to each pixel, e.g.

2. Keep track of relationships between those labels

G256 GO0O

= Can use "Union Find"”, a.k.a "Disjoit Set Forest” datastructure

17/23

The new ACTS algorithm

— 3
: > 5 1
The Hoshen-Kopelman algorithm < [ATLAS Simulation Preliminary]
(] L Vs=14TeV, HL-LHC, ITk Layout: 03-00-00 -
. . . E 2.5 & mo=200 _+_ —
» For each active pix, search backward neighbors = [ACTSV29.1.0 +_++]
xel r Athena 24.0.12 i
» If there are none, allocate a new cluster label E oL +_+_+ +++*]
» |f there are connections: E r ++'+‘ +++]
1. re-use one of the label g [_+_+ +*]
2. mark all connected labels as equivalent g 15 + *+‘+L N
> B S—
< L +* —e— Current Athena, Mean + RMS |
“ " r + —a— ACTS in Ath .M +RMS o
» Second pass: “Merge” labels based on result I+ n Ahena, Hean 1.,
. .. Lo vv v v v v v v v b v e v e v 1y %10
» These operations are efficiently supported 150 200 250 300 350 400
by the disjoint set forest! Number of Pixel Clusters

18/23

https://en.wikipedia.org/wiki/Hoshen%E2%80%93Kopelman_algorithm

» Promising results from traccc project
» Implementation of a similar algorithm FastSV
» Table: Scaling vs N. of Si sensor modules to process

Scale 1 2 4 8 16 32 64
N 2500 5000 10000 20000 40000 80000 160000
CPU time (ms) 449 84.4 170.9 340.6 691.8 13535 2755.0
GPU time (ms) 3.8 8.0 14.8 29.8 549 109.9 221.3
CPU to base 1.00 1.88 3.81 7.59 1540 30.10 61.40
GPU to base 1.00 2.1 3.89 7.84 14.40 28.90 58.20

GPU speedup (est.) 1.48 1.32 1.44 1.43 1.57 1.54 1.55

credit: Stephen Swatman, ACTS Workshop 2023

19/23

https://github.com/acts-project/traccc
https://indico.cern.ch/event/1295479/contributions/5616089/attachments/2749271/4784798/Massively_Parallel_Clustering_Algorithm_R_D_in_ACTS-2.pdf

—> Know your data
—> Pick the right algorithms
—> Pick the right datastructures
—> Always benchmark

20/23

It's time for ...

Things you didn’t know you needed

Benchmarking!?

v

My laptop: 6-core i7-10850H CPU @ 2.70 GHz with hyperthreading
Turned off turbo boost for reproducible results

» echo 1 > /sys/devices/system/cpu/intel_pstate/no_turbo
Set performance mode for CPU governor

» cpupower frequency-set -g performance

Pick a core, disable hyperthreading for it
P> cat /sys/devices/system/cpu/cpu0/topology/thread_siblings_list B
» echo 0 > /sys/devices/system/cpu/cpu6/online
Run jobs with minimum niceness to avoid yielding to other thread 72
» nice -20 <command>
[

Run jobs with maximum CPU affinity to avoid context switches
> taskset -c 0 <command>
Monitor temperature sensors
> acpi -t
Close potential resource-hungry programs, do nothing else while job is running
Check timing distributions for outliers

Verify that results hold over multiple runs

22/23

Benchmarking!?

» Very easy to get this wrong. ..
» Check out: LIKWID

Probe the hardware topology of your device

Microbenchmark suite to characterize your device

Enforce thread/core affinity of a program

Control CPU-level settings, e.g. frequencies, hyperthreading, ...

Measure performance metrics (Can use other programs like perf as backend!)
Helpers for benchmarking openMP/MPI applications

Helpers for making performance plots

Extensive documentations

...and more!

vy

VVVYVYYVYY

23/23

https://github.com/RRZE-HPC/likwid

