

ECS recap. and stability studies

Simone Spampinati

On Behalf of WP4

DR dynamical aperture

Tracking has been performed with PTC (MAD-X interface) over ~15% damping time neglecting radiation damping. The estimated loss of accuracy is below 1% at the nominal energy.

- The stability region in the transverse plane has been evaluated for different energy deviations. Contours represent regions where >90% of the initial conditions lead to successful tracking
- The transverse stable region is shown for the nominal beam energy (1.54 GeV black) and for ±2%(left), ±4%(right) energy relative deviation (blue and blue). The stable region is kept quite constant within 2% energy spread. It shrinks significantly for higher deviations

• Transverse emittance is preserved in both planes

 The aim of the energy compressor is to maximize the number of particles accepted in energy by the DR (1.54 -/+ 2%)

1100

- A four-bending C-shape chicane. Dispersion and second order dispersion closed by symmetry.
- Two cavities of the type used for the positron LINAC (LINAC 2022) THPOJO08)
- Distribution at the end of the pLINAC provided by M. Schaer

Value	Unit	
0.2256 (12.9)	rad (deg)	4000
1.395	m	3000 st O 2000
1	m	
0.205	m	
0.56	m	
2		1000 -
2	GHz	
20	MV/m	
99	MV	0 100
	Value 0.2256 (12.9) 1.395 1 0.205 0.56 2 2 2 2 99	Value Onit 0.2256 (12.9) rad (deg) 1.395 m 1.395 m 0.205 m 0.205 m 0.56 m 2 GHz 2 GHz 20 MV/m 99 MV

Energy distribution

Beam fraction in E0-/+2%

Tolerance on E0

- Distribution at the end of the pLINAC provided by M. Schaer
- Rigid shift applied

Tolerance on RF

• Tolerance of Amplitude and phase variation relaxed

pDR acceptance of the pLINAC particles

- Particle beam beam prepared with a start-to-end simulation. Positron linac simulated with RF_TRACK. Energy compressor and injection TF are simulated with elegant
- DR acceptance: Survived particles at 10k turns (PTC-MADX): 59794/71800 = 83%
- The picture shows the transverse distribution of the survived particles according to their positions at e+ linac exit.
- The coordinate of the dead particles can be used to study a possible reduction and collimation of the positron beam coming from the source

