

FCC-ee positron imperfections

Y. Zhao, A. Latina, CERN

FCC-ee WP1 meeting

31 May 2024

News

- Geant4 yield bug related to mesh (/score/) confirmed by Geant4 experts (many thanks to Fahad for the communication). For the moment, keep using conservative yield (mesh off) before the bug is fixed
- Yield updates
 - 3rd May @ WP1 meeting: Good benchmarking of "V0" with Mattia (DR accepted yield: ~6.7). First results of "V1" (current baseline) simulation. "V1" DR accepted yield: ~5.7 (w/o collective effects)
 - **13**th **May** @ WP3 meeting: RF-Track updates (fixes and robustness). "V1" DR accepted yield: ~**5.2** (~5.3 w/o collective effects). Investigation found that reoptimisation needed due to RF-Track updates.
 - 31th May (today) @ WP1 meeting: gradient & phases reoptimised. "V1" DR accepted yield: ~5.6 (~5.7 w/o collective effects)
- Imperfections updates
 - Using larger angular error for small elements (as Riccardo suggested)
 - Using **separate single dipole field** instead of combined field in chicane for better misalignments
 - Magnet strength errors, RF gradient and phase errors and beam jitters included

"V1" configuration review

- Electron drive beam: **1 mm** spot size
- AMD: HTS solenoid (2D fieldmap). Target exit located at 40 mm w.r.t. peak field
- Capture linac (CL): up to ~205 MeV (peak energy)
 - 1 short (72 mm long) tuning solenoid (1D fieldmap) between AMD and RF structures
 - 9 regular (200 mm long) solenoids (1D fieldmap) surrounding each RF structure
 - 1 regular solenoid between neighbouring RF structures
 - 5 RF structures (2D fieldmap). Each 3 m long, large aperture (R = 30 mm), G = 19.748236 MV/m (as it is in the fieldmap, obtained from autophase, which was just thought to be exactly 20 MV/m previously)

Schematic layout (partial)

HTS + NC solenoids field

"V1" configuration review

- Chicane (CC)
 - Designed by Riccardo & Mattia
 - Beam pipe (rectangle): Rx = 75 mm, Ry = **20 mm**, L = 2 m
 - Dipole: 3D field map. Peak field: ~0.2 T
 - Collimator (CM): Rx = 37.5 mm, Ry = 20 mm, L = 120 mm, z0 = 132.5 mm (w.r.t CC center)
 - Keeping it as it is now, though aperture is a bit small and collimator position is not physical

Schematic layout (longitudinal sectional drawing)

Transverse sectional drawing

"V1" configuration review

- Positron linac (PL)
 - Designed by Mattia
 - Section 1 (PL1): up to ~730 MeV (peak energy). Same structure with CL. 9 structures. G = 19.78 MV/m (19.55 MV/m if w/o short-range wakefield). φ = -10°
 - Matching section (PLM): 5 quadrupoles. Quadrupole (0.5 m long) distance fixed to 2 m
 - Section 2 (PL2): up to 1.54 GeV. Same structure with CL. 14 structures in 7 FODO cells. Quadrupole (0.35 m long) distance fixed to ~4 m. G = 19.78 MV/m (19.55 MV/m if w/o short-range wakefield). φ = -10°

- Energy compressor (ECS): not yet simulated
- Damping ring (DR): not simulated. Simple acceptance cuts applied
 - Energy window: 1.54 GeV ± 3.8%. Time window: 16.7 mm/c

Nominal results

- Perfect machine (w/o imperfections)
- Collective effects considered
 - Space charge. Short-range wakefield in positron linac

Results	Yield after Target, CL, PL and DR cu	uts ε _{n,x,y} after DR cuts [mm]
W/o collective effects	13.9, 8.1, 6.3, 5.7	10.3, 10.9
W/ collective effects	13.9, 8.0, 6.2 , 5.6	10.3, 10.9
Accepted σ _e ~1.6%	2500	2
	400 gr 1500 1000 300 500	
	200 4000 4000	2 -20 -10 0 10 20 30 x[mm]
	3000 100 費 <u>2000</u>	l l l l l l l l l l l l l l l l l l l
121760 121765 121770 121779 t [mm/c]	5 0 0 121765 121770 121775 12178	-2 -2 -3 -20 -10 y (mm) -20 30
Long	tudinal phase spaces	Transverse phase space

Yongke ZHAO

P [MeV/c]

FCC-ee WP1 meeting

Loss map

• Positron transport efficiency

Loss map

Positron transport efficiency

Imperfections

- Imperfections considered
 - **Position** error (x, y): $\sigma = 100$ um for all elements
 - Angular error (roll, pitch, yaw): σ = 100 urad for all elements, except that σ = 200 urad for all NC solenoids and dipoles
 - Magnatic **strength** error: $\sigma = 0.1\%$ for all magnets
 - RF gradient error: σ = 1% for all RF structures
 - RF **phase** error: σ = **0.1**° for all RF structures
 - Beam **position jitter** (x, y): $\sigma = 100$ um for e⁺ beam from target
 - Beam **angular jitter** (x', y'): $\sigma = 100$ urad for e⁺ beam from target

Imperfections

- Imperfections considered
 - **Position** error (x, y): $\sigma = 100$ um for all elements
 - Angular error (roll, pitch, yaw): σ = 100 urad for all elements, except that σ = 200 urad for all NC solenoids and dipoles
 - Magnatic **strength** error: $\sigma = 0.1\%$ for all magnets
 - RF gradient error: σ = 5% for all RF structures
 - RF **phase** error: σ = **0.5**° for all RF structures
 - Beam **position jitter** (x, y): $\sigma = 100$ um for e⁺ beam from target
 - Beam **angular jitter** (x', y'): $\sigma = 100$ urad for e⁺ beam from target

Very large gradient and phase errors

Additional studies: spot size in chicane

Yongke ZHAO

FCC-ee WP1 meeting

Additional studies: loss in chicane

• Yield (not the DR accepted yield) loss in chicane: ~1.0 e⁺/e⁻

- DR accepted yield loss in chicane is ~0.2 e⁺/e⁻
 - Estimated by turning off dipole field, using very large beam pipe apertures and removing collimator in chicane

Additional studies: RF aperture scan

- Very simple scan of RF structure geometric aperture, a₀
 - Same field map used
 - 10% particles from target used

Additional studies: DR @ 2.86 GeV

- Similar configuration with 1.54 GeV, except that:
 - Electron beam energy: 2.86 GeV (instead of 6 GeV)
 - Target thickness: 15 mm (instead of 17.5 mm)
 - Positron linac (PL): G = 19.65 MV/m, ϕ = -5°
 - Positron linac section 2 (PL2) extended to 36 structures (instead of 14) with the same FODO lattice
 - DR acceptance energy cut: **±1.2%** @ 2.86 GeV (instead of ±3.8% @ 1.54 GeV)
 - DR acceptance time window: 20 mm/c (instead of 16.7 mm/c)

Results	Yield after Target, CL, PL and DR cuts	$\epsilon_{n,x,y}$ after DR cuts [mm]
W/o collective effects	7.1, 4.1, 3.2 , 2.2	9.2, 10.2

Yongke ZHAO

Conclusions

- Nominal results and imperfections study presented for positrons
- Effect of imperfections is very small, unless when very large gradient and phase errors are assumed
- Loss in chicane studied, which is not negligible and can be reduced
- Very preliminary results for DR @ 2.86 GeV
- Next steps (after FCC week)
 - Chicane (and collimator) to be optimised (to discuss with Riccardo)
 - Energy compressor to be included in the simulation
 - More DR requirements to be specified for accepted yield estimation. Currently the requirements might be too simple - maximum yield in time and energy cut window at positron linac exit

Backup