Dual Readout Method in Calorimetry

Roberto Ferrari INFN Pavia

CERN, 7 June 2024

Istituto Nazionale di Fisica Nucleare Sezione di Pavia

outline

- 1. Hadron calorimetry issues
- 2. Dual-readout calorimetry
- 3. Few DREAM/RD52 results
- 4. Dual readout goes granular (IDEA fibre calorimeter)
- 5. Exploit timing and DNNs
- 6. Crystal option (IDEA++) and pPFA
- 7. Next steps

2

1. Hadron calorimetry issues

Due to π^0 and η production, hadronic showers develop 2 main components:

hadronic component: p, n, π^{\pm} , nuclear fission, ... delayed photons, ...

shower typical size: $\lambda_{I} \sim 35 \text{ g/cm}^2 \cdot A^{1/3}$

Em component Non-em component

hadronic showers

average values ... issue: fluctuations!

Many components w/ large fluctuations in relative yield

1. Large non-gaussian fluctuations in em/non-em energy sharing

- 2. Increase of *em* component with energy
- 3. Large, non-gaussian fluctuations in "invisible" energy losses

5

In nuclear reactions, energy lost (binding energy) to free protons and neutrons

- no measurable signal (invisible energy)
- on average about 30-40% of non-em shower energy

Large event-by-event fluctuations limit resolution

Correlation between invisible energy and kinetic energy carried by released nucleons

Evaporation nucleons: soft spectrum, mostly neutrons (2-3 MeV)

Wigmans, NIM A259, 389

Shower energy fraction mainly carried by π^0 (but also η) mesons For shower initiated by charged pions:

$$\langle f_{em} \rangle = 1 - \left(\underbrace{E}_{E_0} \right)^{(k-1)}$$

E₀: average energy for single π^0 production, $k \approx 0.8 < -1$

<fem> large and energy dependent

fluctuations in $f_{\mbox{\tiny em}}$ large and non-poissonian

Response:

detected signal per unit energy deposit

e.g. number of scintillating (or Cherenkov) p.e. / deposited GeV

Hadronic showers:

em component \rightarrow response e hadronic component \rightarrow response h

what about relative ratio (e/h)?

detector response to hadronic showers

e/h ratio: detector characteristic typically, ~2 for crystals, in range 1-1.8 for sampling calorimeters

Nevertheless:

1) e/π depends on energy (f_{em} depends on E and shower "age") 2) $< f_{em} > different for \pi$, K, p \rightarrow response depends on particle type

e ≠ h

only 1/1.8 \approx 56% of non- π° energy accounted by signal

Response to protons? Average signal for protons: $S_p = e \cdot \langle f_{em}(p) \rangle \cdot E + h \cdot (1 - \langle f_{em}(p) \rangle) \cdot E$

 \rightarrow Response: $R_p = S_p / E \equiv p$, $\langle f_{em}(p) \rangle \equiv f_p = f_p(E)$

 \rightarrow p = e · f_{p} + h · $(1 - f_{p})$ = h · $(1 + f_{p} \cdot (e/h - 1))$

 $e/p = e/h / (1 + f_p \cdot (e/h - 1)) \rightarrow do we have a problem ?$

e/π ratio

As well, calorimeter response to charged pions: π

 $e/\pi = e/h / (1 + f_{\pi} \cdot (e/h - 1))$ $f_{\pi} \equiv \langle f_{em}(\pi) \rangle \neq f_{\rho}$

response to π as function of E

$e/h = 1 \rightarrow compensating calorimeter$

1) increase $h \rightarrow boost hadron response$ e.g. by adding hydrogen or Uranium, both acting as "neutron converters" \rightarrow large integration volume and time

2) decrease $e \rightarrow$ decrease em sampling fraction or frequency \rightarrow spoil em performance \rightarrow tune active / passive material ratio

e/mip ratio

mip : minimum ionising particle \rightarrow only ionisation

```
dE/dx (mip) :
     lead ~ 12.6 MeV/cm \rightarrow 7 MeV/X<sub>0</sub>
     copper ~ 12.7 MeV/cm \rightarrow 18 MeV/X<sub>0</sub>
     ( PMMA ~ 2.3 MeV/cm \rightarrow 78 MeV/X<sub>0</sub> )
```

Moreover in high-Z absorbers :

 Z^5 dependence of photoelectric effect \rightarrow most soft-y interact in absorber

photoelectrons have very short range \rightarrow contribute to signal only close to boundaries

 \rightarrow response to em showers suppressed wrt. mips

e/mip ratio

Relevant for jet detection ... should we really care about ?

- NO guarantee for high resolution
 - fluctuations in f_{em} are canceled but others may be very large \blacklozenge
- Has drawbacks
 - high-Z absorber required \rightarrow small e/mip \rightarrow non linearity @ low energy \blacklozenge
 - low sampling fraction required \rightarrow em resolution limited
 - relies on neutrons \rightarrow integration over large volume and time \blacklozenge SPACAL: to get $30\%/\sqrt{E} \sim 15$ tonnes of lead and ~ 50 ns integration time
- high-res em and high-res hadron calorimetry mutually exclusive:
 - good jet energy resolution \Rightarrow compensation

 \Rightarrow small sampling fraction (~3%) \Rightarrow poor em resolution

good em resolution \Rightarrow high sampling fraction (100% crystals, 20% LAr) \blacklozenge

 \Rightarrow large non compensation \Rightarrow poor jet resolution

2. Dual-readout calorimetry

Disentangle relativistic (i.e. electromagnetic) and non relativistic (i.e. nuclear) components of hadronic shower

 \rightarrow get (compensate for) f_{em} event by event

both scintillation & Cherenkov light

almost only scintillation light

dual-readout algebra

 $S = E \times [f_{em} + S \times (1 - f_{em})]$ $\mathbf{C} = \mathbf{E} \times [\mathbf{f}_{em} + \mathbf{C} \times (1 - \mathbf{f}_{em})]$

f_{em} = electromagnetic shower fraction $s = (h/e)_s$, $c = (h/e)_c$: detector-specific constants

by solving the system, both E and f_{em} can be reconstructed

E measured at em energy scale

applying dual-readout formulae

CERN 07.06.2024

$$\cot g \theta = \frac{1 - (h/e)_S}{1 - (h/e)_C} = \chi$$

before dual-readout correction

after dual-readout correction

CERN 07.06.2024

$\cot \theta = \frac{I - (h/e)_s}{I - (h/e)_c} = \chi$

10-150 GeV π^{-}

f_{em}

 $C/S = [f_{em} + s \times (1 - f_{em})] / [f_{em} + c \times (1 - f_{em})]$

 \rightarrow C/S depends only on f_{em} so that

$$f = \frac{c - s}{(C/S)(1 - s)}$$

 \rightarrow f_{em} depends only on C/S \rightarrow can use C/S to select f_{em} subsamples

to get f_{em} absolute value, at least one of (h/e) factors needs to be known

[or extracted e.g. by fitting $\langle C/E \rangle$ as function of E]

$\frac{(C/S)}{(s)-(1-c)}$

$f_{\text{em}} \ fluctuations$

CERN 07.06.2024

DREAM: Effect of event selection based on fem

NIM A 537 (2005) 537

invisible energy fraction – Geant4 simulations

CERN 07.06.2024

 f_{inv}

back to dual-readout formulae ...

 $(1-f_{em})$ can be reconstructed within (unknown) constant factor (>) O(1)

$$> \left(\frac{h}{e}\right)_{c} \Rightarrow \chi < 1$$

x measurable if E known — **γ** can be extracted from testbeam data

Geant4 simulations – (h/e) and χ factors

80 GeV protons in Copper 1 & Lead 1

Geant4 simulations – χ scan

Can't optimise both !

Target should be linearity

f_{em} (really f_h) estimation

Independently for S and C signals, you can easily get:

 $\eta_x \equiv (h/e)_x$

$$f_h \stackrel{\text{\tiny def}}{=} (1 - f_{em}) = \frac{1 - S/E}{1 - \eta_s} = \frac{1 - S/E}{\chi \cdot (1 - \eta_c)}$$

 f_h can be estimated event-by-event within scale factor ≈ 1 (since $\eta_C \ll 1$)

 $\frac{1-C/E}{1-\eta_c}$

(h/e) estimation (?)

Up to few hundreds GeV, $\langle f_h \rangle$ as function of E, should be fairly well described by:

$$< f_h(E) > \approx (E/E_0)^{m-1}$$
 for $E > E_0$

where mainly (?) m should depend on absorber, E_0 on particle type

Two-parameter fit to:

$$L - \langle C/E \rangle \approx (1 - \eta_C) \times (E/E_0)^{m-1} = \lambda \times E^{m-1}$$
$$\lambda \equiv (1 - \eta_C) \times E_0^{1-m}$$

Some more input/assumptions (?):

 $m \in [0.80, 0.87] \Rightarrow 1-m \in [0.13, 0.20] \ll 1$ $E_0(\pi) [E_0(p)] \approx 1 \text{ GeV} [2.6 \text{ GeV}]$

with pion data, since
$$E_0^{1-m}(\pi) \approx 1 \Rightarrow \lambda$$

then with proton [kaon, ...] data $\Rightarrow E_0(p) [E_0(K), ...]$

3. Few DREAM/RD52 results

CERN 07.06.2024

DREAM/RD52 dual-readout spaghetti prototypes

2003 DREAM	Cu: 19 towers, 2 PMT each 2 m long, 16.2 cm radius Sampling fraction: 2% Depth: ~10 λ _{int}	Copper $\vdash 2.5$ -4
2012 RD52	Cu, 2 modules Each module: $9.2 \times 9.2 \times 250 \text{ cm}^3$ Fibers: $1024 \text{ S} + 1024 \text{ C}$, 8 PMT Sampling fraction: ~4.6% Depth: ~10 λ_{int}	
2012 RD52	Pb, 9 modules Each module: $9.2 \times 9.2 \times 250 \text{ cm}^3$ Fibers: 1024 S + 1024 C, 8 PMT Sampling fraction: ~5.3% Depth: ~10 λ_{int}	

RD52 dual-readout spaghetti prototypes

dual-readout at work (1)

Effects of the dual-readout method Signal linearity

CERN 07.06.2024

NIM A 866 (2017) 76

dual-readout at work (2)

$80 \text{ GeV } \pi$									
	140			Entri Mear RMS	es n S	6391 50.53 10.54	240 220 200 180		
ts per bin	100		rms	<i>Cerer</i> s/mea	a = a	v 21%	160 140 120 100 80 40 40		
mber of ever	240 220 200 180 160			Entries χ^2 / ndf Mean Sigma	20 1 6.18	140 160 6391 39.1 / 111 75.1 ± 0.1 5 ± 0.060	300 250		
Nu	140 120 100 80 60 40 20	c)	Mars	σ/E	= 8	3.2%			
	0	20 40 60 80		Calo	prin	neter.	signa		

	Al 4	Al 3	Cu 4	Cu 3	
	Al 1	Al 2	Cu 1	Cu 2	
T1	Т2	Т3	Т4	Т5	Т6
Т7	Т8	Т9	T10	T11	T12
Т13	T14	Т15	T16	T17	Т18
T19	Т20	T21	T22	Т23	T24
Т25	Т26	T27	T28	Т29	Т30
T31	Т32	Т33	T34	Т35	Т36

NIM A 866 (2017) 76

CERN 07.06.2024

RD52 expected hadronic performance

NIM A 824 (2016) 721
particle ID (electron/hadron discrimination)

Combination of cuts: >99% *electron efficiency*, <0.2% *pion mis-ID*

4. Dual readout goes granular (IDEA fibre calorimeter)

Brass module, dimensions: ~ 112 cm long, 12 x 12 mm²

32 (S) + 32 (Č) fibres $X_0 \sim 29 \text{ mm}$ $R_M \sim 31 \text{ mm}$ $\sim (0.4 \text{ R}_M)^2 \times 39 X_0$ shower cont. $\sim 45\%$ $f_{sampl} \sim 5-6\%$

Light sensors (SiPM)

lateral shower profile w/ SiPMs

em shower very narrow:

~10% (~50%) within ~1 (~10) mm from shower axis → fibre readout can easily provide (powerful) input to PFA

CERN 07.06.2024

2D fibre imaging

Geant4 single-particle simulations

IDEA: Innovative Detector for e+e- Accelerators

IDEA baseline concept

- Muon chambers
 MUDIAL in roturn in
 - µ-RWELL in return yoke
- + Dual-readout calorimetry 2 m / 7 λ_{int}
- Thin superconducting solenoid
 - + 2 T, 30 cm, ~ 0.7 X_0 , 0.16 λ_{int} @ 90°
- Highly transparent for tracking
 - Si pixel vertex detector
 - Drift Chamber
 - Si wrappers (strips)
- ✦ Beam pipe: r ~ 1.5 cm

Three main activity pillars:

- 1. Europa: INFN, Sussex University \rightarrow mainly (but not only) fibre-sampling calorimetry
- 2. Korea \rightarrow projective fibre-sampling calorimetry
- 3. U.S. (Calvision project) \rightarrow mainly (but not only) crystal em calorimetry

keywords: dual readout, high granularity & timing

IDEA all-fibre DR calorimeter option

 DR fibre calorimeter ✤ O(100 M) fibres + 1 mm ø, 1.5 mm pitch copper absorber ✤ 75 projective towers × 36 slices \bullet $\Delta \vartheta = 1.125^{\circ}, \Delta \varphi = 10.0^{\circ}$ ϑ coverage: $|\vartheta| > 100$ mrad

G4 simulation available tuned to RD52 TB data

- Gaussian resolution
- Adequate separation of W / Z / H

CERN 07.06.2024

IDEA 2020 em-size bucatini prototype (EU)

Nine ~3.5×3.3 cm² towers made of capillary brass tubes

Central tower (360 fibres) w/ highly granular SiPM readout

Eight (surrounding) towers read out with PMTs

Scintillation fibers

CERN 07.06.2024

Cherenkov fibers

Few testbeam results

Lateral shower profile (2021 TB)

5. Exploiting timing and DNNs

Testbeam module (brass absorber): dimensions: 133.2×133.2×250 cm³ Reduced granularity (1.2×1.2 cm², 32 S & 32 C fibres): 111×111 modules Simulation of both detector and SiPM response Feature extraction: E(Q), Pk, ToP, ToA, ToT \rightarrow each event represented by 111×111×5×2 tensor

Two DNN architecture variants studied:

- VGG-11 like (VGG = Visual Geometry Group, Oxford Un.)
- Dynamic Graph CNN (DGCNN)

6 event classis (covering ~ 90% of τ decays) Training set: 6 BR × 2000 evts

VGG example

NN performance

Confusion matrix on test set

CERN 07.06.2024

Predicted BR

No SiPM response simulation

 \rightarrow information: fibre signal output (# p.e.)

3-class classification: $\tau_{lep}, \tau_{had}, QCD \ jet$

8-class classification: τ₀, τ₁, τ₂, τ₃, τ₄, τ₅, τ₆, QCD jet

[τ from Z $\rightarrow \tau\tau$ decays]

3-class label	8-class label	
0	0	$\tau \rightarrow \mu \nu \nu$
0	1	$\tau \rightarrow evv$
1	2	$\tau \rightarrow \pi v$
1	3	$\tau \rightarrow \pi \pi^0 \nu$
1	4	$\tau \rightarrow \pi \pi^0 \pi^0 \nu$
1	5	$\tau \rightarrow \pi \pi \pi \nu$
1	6	$\tau \rightarrow \pi \pi \pi^0 v$
2	7	$Z \rightarrow qq$ jets

DGCNN w/ geometrical information only

DGCNN optimised but w/o #pe as input feature B field and material in

CERN 07.06.2024

6.95	0.79	0.62	0.03	0.00	0.00	1.58	0.03	
3.09	89.03	3.48	0.41	2.02	0.39	1.44	0.14	
1.77	4.83	80.45	9.25	1.61	1.67	0.16	0.25	
0.30	0.38	10.43	84.55	0.16	3.87	0.05	0.25	
0.16	3.52	1.38	0.35	84.82	8.79	0.03	0.95	
0.11	0.24	1.98	2.60	10.19	82.60	0.08	2.20	
2.53	0.48	0.11	0.00	0.03	0.00	96.82	0.03	
0.08	0.25	0.19	1.05	2.54	4.08	0.06	91.75	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	× 1					<b>~</b>	~ <u>~</u>	<b>Դ</b>
-2	2 1		02	1010			52	10. 10,
Predicted BR								

input: fibre coordinates + type
avg accuracy: 88.3% (w/ #p.e. 90.8%)

# longitudinal segmentation w/ timing (U.S.)

Dual-readout fibre calorimeter  $\rightarrow$  signal sampled at 20 GHz

Cu absorber (2 m deep)

Fibre axis aligned w/ beam direction: 1 mm Φ fibres, 1.5 mm spacing

Transverse segmentation: 1×1 cm² for 2D analysis, 3×3 cm² for 3D analysis



### 3D imaging fibre DR calorimeter coupled to Graph DNN

### Preliminary results No optimisation

# longitudinal segmentation w/ timing (U.S.)



Table 1. The energy resolution of the 3D GNN reconstruction with various timing resolutions for longitudinal segmentation.

Timing Resolution $\Delta(t)$ , ps	Position Resolution $\Delta(z)$ , cm	Energy Resolution $\sigma/E$ , %	@ 100 GeV	
0	0.0	3.6	only Cherenkov fibres	
100	5.0	3.9		
150	7.5	4.0		
200	10.0	4.2		

# longitudinal segmentation w/ timing (Korea)

Full SiPM signal sampled at 10 GHz

FFT used to mitigate exponential tail

Unlocks full longitudinal information about energy deposit

Combined with DR information allows in-shower cluster identification





## waveform digitisation (U.S.)

### Results with SensL (MicroFC-30020SMT): SiPM with both fast and standard outputs



**One-photon event** 

Two-photon event (simultaneous)

Two-photon event (5 ns apart)

### **NALU Scientific** AARDVARC v3

- Sampling rate 10-14 GS/s
- 12 bits ADC
- 4-8 ps timing resolution
- 32 k sampling buffer
- 2 GHz bandwidth
- System-on-Chip (CPU)



# 6. Crystal option (IDEA++) and pPFA

## high EM energy resolution @ FCC-ee

 $3\%/\sqrt{E}$  EM energy resolution  $\rightarrow$  improve event reconstruction and expand landscape for physics studies @ e⁺e⁻ colliders

- CP violation studies with B_s decay
   to final states with low energy photons
- Clustering of  $\pi^{0}$ 's photons to improve performance of jet clustering algorithms
- Improve resolution of recoil-mass signal from Z → ee decays (recovering brems photons)







## homogeneous crystal calorimetry



- Only way to get  $1-3\%/\sqrt{(E)}$  energy resolution for photons (and thus  $\pi^{0}$ 's)
- No stringent requirements on radiation tolerance and pileup @ future e⁺e⁻ Higgs factorier  $\rightarrow$  can exploit best possible precision of event reconstruction



## Segmented Crystal EM Precision Calorimeter

### ongoing joint efforts within US Calvision, IDEA and Crystal Clear collaborations

proof-of-concept with lab measurements and prototypes (PWO, BGO, BSO, ... with SiPM readout)

ongoing simulation effort in DD4HEP and FCC software + DR-pPFA developments





### ✦ ECAL ~20 cm PbWO₄ → 2 layers: 6+16 X₀ DR with filters • $\sigma_{\rm EM} \approx 3\% \, / \sqrt{\rm E}$ $\blacklozenge$ timing layer LYSO:Ce crystals + σ_t ~ 20 ps **HCAL** layer +

+ 
$$\sigma_{HAD}/E \sim 26\%/\sqrt{E}$$



 Simultaneous readout of scintillation and Cherenkov light from same active element with dedicated SiPMs and wavelength filters



### **PWO**

## dual-readout method in hybrid system

- 1. Independently evaluate χ-factors for crystal and fibre sections
- 2. Independenlty apply DRO correction on energy deposits for crystal and fibre sections
- 3. Add up corrected energy from both sections



$$\chi_{HCAL} = \frac{1 - (h/e)_s^{HCAL}}{1 - (h/e)_c^{HCAL}}$$

$$\chi_{ECAL} = \frac{1 - (h/e)_c^{ECAL}}{1 - (h/e)_c^{ECAL}}$$

$$E_{HCAL} = \frac{S_{HCAL} - \chi_{HCAL}C_{HCAL}}{1 - \chi_{HCAL}}$$

$$E_{ECAL} = \frac{S_{ECAL} - \chi_{ECAL}C_{ECAL}}{1 - \chi_{ECAL}}$$

$$E_{total} = E_{HCAL} + E_{ECAL}$$

- ECAL (crystal section): 2000 (scintillation) and 160 (Cherenkov) p.e./GeV
- HCAL (fibre section): 400 (S) and 100 (C) p.e./GeV

### • Dual-readout method confirms applicability to hybrid calorimeter system

 $\circ$  Response linearity to hadrons restored within  $\pm 1\%$ 

Hadron energy resolution comparable to fibre-only IDEA calorimeter



- Different optimisation of PF algorithm required for coarsely segmented calorimeter
- Q: Could better energy linearity and resolution offset coarser longitudinal segmentation?

		1			
		High granularity	Fiber-based	Hybrid crystal	
		Si/W ECAL and	dual-readout	and dual-readout	
	SC	cintillator based HCAL	calorimeter	calorimeter	
N. of longitudinal layers		> 40	1	5 •	
ECAL cell cross-section		$25-100 \mathrm{mm^2}$	$2.144 \text{ mm}^2$	$100  {\rm mm^2}$	
HCAL cell cross-section		$100-900 \mathrm{mm^2}$	• 2-144 11111	$400-2500 \text{ mm}^2$	
EM energy resolution		$15 - 25\% / \sqrt{E}$	$10 - 15\% / \sqrt{E}$	$\approx 3\%/\sqrt{E}$	
HAD energy resolution		$45 - 55\% / \sqrt{E}$	$25 - 30\%/\sqrt{E}$	$\approx 25 - 30\% / \sqrt{E}$	

Highest longitudinal segmentation

Highest transverse segmentation: full potential (e.g. using neural networks) yet to be explored





Geant4 simulation of  $Z \rightarrow jj$  events:

- magnetic field ON but NO tracker
- Gaussian smearings of MC tracks according to expected IDEA tracker performance
- for each track, extrapolate impact point
- remove and store tracks not reaching calo



Geant4 simulation of  $Z \rightarrow jj$  events: م 0.05 magnetic field ON but NO tracker • Gaussian smearings of MC tracks according to expected IDEA tracker performance • for each track, extrapolate impact point • remove and store tracks not reaching calo • identify EM neutral clusters (photons) by cluster radius  $E_{\text{seed}}$ -0.05 $R_{\rm transverse} =$  $\overline{\sum_{i} E_{\text{hit},i} (\Delta R_i < 0.013)}$ -0. remove and store photons (R<0.9)</li> -0.15

CERN 07.06.2024

-0.2L

0.6



Geant4 simulation of  $Z \rightarrow jj$  events:

- magnetic field ON but NO tracker
- Gaussian smearings of MC tracks according to expected IDEA tracker performance
- for each track, extrapolate impact point
- remove and store tracks not reaching calo
- identify EM neutral clusters (photons) by cluster radius Erend R

$$R_{\text{transverse}} = \frac{\beta_{\text{seed}}}{\sum_{i} E_{\text{hit},i} (\Delta R_i < 0.013)}$$

- remove and store photons (R<0.9)</li>
- for each track, rank calo hits by distance



Geant4 simulation of  $Z \rightarrow jj$  events:

- magnetic field ON but NO tracker
- Gaussian smearings of MC tracks according to expected IDEA tracker performance
- for each track, extrapolate impact point
- remove and store tracks not reaching calo
- identify EM neutral clusters (photons) by cluster radius Econd R

$$R_{\text{transverse}} = \frac{-\sec \alpha}{\sum_{i} E_{\text{hit},i} (\Delta R_i < 0.013)}$$

- remove and store photons (R<0.9)</li>
- for each track, rank calo hits by distance
- collect hits in cone(s)


### jet reconstruction $\rightarrow$ IDEA++ DR-pPFA

Geant4 simulation of  $Z \rightarrow jj$  events: Lrequency magnetic field ON but NO tracker • Gaussian smearings of MC tracks according to expected IDEA tracker performance • for each track, extrapolate impact point 0.16 • remove and store tracks not reaching calo 0.14F • identify EM neutral clusters (photons) by cluster radius 0.12F  $E_{\text{seed}}$  $R_{\text{transverse}} =$  $\overline{\sum_{i} E_{\text{hit},i}(\Delta R_i < 0.013)}$ 0.1 0.08F remove and store photons (R<0.9)</li> 0.06E • for each track, rank calo hits by distance 0.04 collect hits in cone(s) 0.02 • compare with E_{target}(track)

### https://doi.org/10.1088/1748-0221/17/06/P06008



# jet reconstruction $\rightarrow$ IDEA++ DR-pPFA



- compare with E_{target}(track)
- if "good" agreement remove hits and replace them with track

Please note: dual-readout is used to correct energy of clustered calorimeter hits and improve track-hit matching

### https://doi.org/10.1088/1748-0221/17/06/P06008



# jet clustering

• Jet clustering algorithm* fed with collection of

- all photon hits
- tracks of
  - charged particles not reaching calorimeter
  - tracks swapped with calorimeter hits in previous step
- All other calorimeter hits (both ECAL and HCAL) not been swapped out
- As result, 4-momentum vectors are clustered into two jets
- Jet energy ("non-swapped hadron" component) is corrected with DRO**

$$E_{jet} = C_{PFA} \cdot \left[ \sum E_{hits,\gamma} + \sum E_{tracks} + \sum E_{tracks} \right]$$

*FASTJET package: generalized  $k_{\tau}$  algorithm with  $R=2\pi$  and number of jets fixed to 2

**dual-readout used here to correct energy of calorimeter hits with no match to tracks (e.g. neutral hadrons)

CERN 07.06.2024

https://doi.org/10.1088/1748-0221/17/06/P06008



Ehits, leftover, DRO

# jet energy resolution w/ and w/o DR-pPFA

Resolution and linearity as a function of jet energy in off-shell  $e^+e^- \rightarrow Z^* \rightarrow jj$ events (at different centre-of-mass energies):

- crystals + IDEA w/o DRO
- crystals + IDEA w/ DRO
- crystals + IDEA w/ DRO + pPFA





Sensible improvement in jet energy resolution using dual-readout information combined with PF approach  $\rightarrow$  3-4% for energies above 50 GeV

CERN 07.06.2024

### https://doi.org/10.1088/1748-0221/17/06/P06008

### More details in: 2022 JINST 17 P06008

- Light yield and purity of S and C signals likely key discriminant between crystal options
- Different strategies exploitable for different scintillators



CERN 07.06.2024

# Hadronic-containment prototype

### HiDRa – Highly granular Dual Readout demonstrator



CERN 07.06.2024

## Work in progress



- C and S fibres positioned per raw
- Fibre separation at calorimeter rear end
- Fibre grouping for PMT coupling







scintillating fibres



### **Cherenkov fibres**

CERN 07.06.2024

# • Stainless steel capillary tubes w/ 2 mm diameter

Fibre disposal and grouping (pictures from

# SiPMs for HiDRa

New solution by Hamamatsu:

boards with 8 "in-line" SiPMs dimension  $1 \times 1 \text{ mm}^2$ 10 or 15 µm cell size SiPMs selected such that  $\Delta V_{bd} < 100 \text{ mV}$ 



Our present best fit:

a) use 10  $\mu m$  cell-size SiPMs for scintillating fibres b) use 15  $\mu m$  cell-size SiPMs for clear fibres

### Testing 10 boards per cell-size type

CERN 07.06.2024

### 8x Effective photosensitive area ( $\phi$ 1.0)

# Alternative photosensors



- SPAD array in CMOS:
- complex functions embedded in single substrate (e.g. SPAD masking, counting, TDCs)
- front-end electronics optimised to preserve signal integrity ( $\rightarrow$  timing)
- simplified assembly of large area detectors
- R&D costs relatively low for design over standard process

# digital SiPMs (dSiPMs)

### no need for analogue-signal post-processing

Growing interest for dual-readout calorimetry (other activities ongoing on dual- and also triple-readout calorimeters)

IDEA fibre calorimeter: dual-readout + single-fibre light sensors (SiPM) + timing  $\rightarrow$  highly granular 3D information

Dual-readout crystal option  $\rightarrow$  may boost em performance without spoiling hadronic one

Highly granular 3D information

- $\rightarrow$  powerful input for deep-learning algorithms and/or PFA
- $\rightarrow$  highly performing final-state identification capabilities

Many R&D activities ongoing exploiting all directions  $\rightarrow$  including different readout options (both charge-integrator and waveform sampling ASICs)

Hadronic-scale demonstrators under construction

Demonstrate (assess) physics performance for both single hadrons and jets (and electrons)

Validate Geant4 shower modeling

Assess scalable solutions concerning construction and signal readout/handling

Exploit DNN architectures for physics analysis

Assess performance in relevant benchmark physics channels

 $\rightarrow$  Fully exploit dual-readout potential for physics programme at FCC-ee

R. Wigmans, Calorimetry: Energy Measurement in Particle Physics, Inter. Series of Mono-graphs on Phys.107, Second Edition, Oxford Schlarship Online (2017)

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)

W.R. Leo, Techniques for nuclear and particle physics experiments, Springer-Verlag, 1994

C. Fabjan, Calorimetry in high energy physics, in Techniques and Concepts of high energy physics III, T. Ferbel ed., Plenum Press, New York, 1985